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ABSTRACT 

Framework for the Utilization of Forward and Inverse Airflow Models in 
Systematic Sensor System Design for Indoor Air 

Lisa (Yung Hua) Chen Ng 
Advisor: Jin Wen, Ph.D. 

The building industry faces many challenges, including maximizing energy 

efficiency and improving the health and safety of building occupants. Indoor air sensor 

systems can be used to regulate ventilation rates, monitor indoor air quality, and detect 

and eliminate harmful contaminants. However, current sensor system design is 

intuitively-based. This research presents the framework for utilizing airflow modeling 

techniques in systematic indoor air sensor system design. 

Airflow modeling is used to simulate the contaminant data necessary for 

systematic sensor system design. Forward airflow models require detailed information 

about an indoor space in order to simulate airflow and contaminant transport. If this 

information is not available, inverse airflow models can estimate airflow patterns using 

measurements from commonly installed sensor systems. Thus, this research was divided 

into three parts: develop a framework for utilizing (1) forward airflow models in 

systematic sensor system design; (2) inverse airflow models for estimating airflow 

patterns in a single zone; and (3) inverse airflow models for estimating airflow patterns in 

a whole building. 

In Part 1, it was found that data from simple airflow models could be used to 

design sensor systems that performed just as well as those designed using more complex 

airflow models for sensor systems with more than one sensor. Thus, saving modeling 
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time without compromising sensor system performance. In Part 2, it was found that 

velocity sensors placed on the wall closest to the exhaust in a single zone most improved 

the airflow estimation accuracy of the developed inverse model. Thus, offering 

practicality in experimental setup without sacrificing estimation accuracy. In Part 3, it 

was found that the proposed building airflow network inverse model could be applied to a 

building of any size if the rank of the known-information matrix was greater than or 

equal to the number of unknown airflow rates. The estimated building airflow network 

was in good agreement with a synthetic building airflow network, and its contaminant 

concentration prediction ability comparable to similar studies published in the literature. 

The proposed building airflow network inverse model also offered computational 

advantages over methods published in the literature. 
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1. CHAPTER 1: INTRODUCTION 

1.1 Background 

The building industry faces many challenges. It has been reported that a majority 

of Americans spend about 90% of their lifetimes indoors [1]. A building that was built or 

retrofitted around the time of the energy crisis of the 1970s would most likely be supplied 

with an outdoor air ventilation rate lower than today's standard. The building would also 

most likely be "airtight" in order to improve energy efficiency. However, such 

construction practices reduce the amount of outdoor air, which can pass through the 

building envelope. A newer building may be supplied with an outdoor air ventilation rate 

at today's standard. However, the use of modern technology (fax machines, printers, etc.) 

also means the presence of more indoor contaminants. Products such as paint, 

particleboard, and carpets also emit volatile organic compounds (VOCs) that can cause 

adverse health symptoms ranging from minor irritation to cancer. 

Indoor air quality (IAQ) is the totality of attributes of indoor air that affect a 

person's health and well-being [2]. It includes measurable quantities like temperature, 

relative humidity, and contaminant levels. Unsatisfactory IAQ is harmful to public health 

and the economy. An estimated $50 to $100 billion is spent annually on IAQ-related 

health care costs, while losses in productivity are estimated between $20 and $70 billion 

[3], 

During these very real times of rising energy prices, the building industry also 

faces increasing demands for more efficient buildings. Whereas under-ventilation results 

in inadequate IAQ, over-ventilation wastes energy by conditioning excess outdoor air. 

Demand control ventilation (DCV), which utilizes IAQ sensor systems to control 
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ventilation rates, has demonstrated great potential to balance IAQ and energy use. With 

new ventilation control mechanisms, a reduction in individual building energy 

consumption (as little as 1%) could lead to a 10% reduction in wholesale electricity 

prices [4] since the building industry is a large consumer of the nation's energy. However, 

a framework for the systematic design of indoor air sensor systems for the control of 

DCV and other non-traditional ventilation systems is still lacking in this field. 

After the tragic events of September 11th and subsequent terrorist attacks, the 

public expects buildings to be safer. The ventilation system that delivers necessary air to 

occupants is also an effective distributor of chemical and biological warfare (CBW) 

agents to a building in the event of an attack. Thus, it is important to develop a 

framework for systematic indoor air sensor system design to quickly detect the presence 

of such agents and warn building occupants. 

The next section presents the framework for systematic indoor air sensor system 

design that has applications for improving IAQ, reducing energy use, and detecting 

foreign and dangerous contaminants, among other applications. 

1.2 Framework for systematic indoor air sensor system design 

Figure 1-1 outlines the framework for systematic indoor air sensor system design. 

Systematic sensor system design first requires an understanding of the airflow pattern 

within a space or a building. This can be determined one of three ways: (1) by specialized 

experiments such as tracer gas tests; (2) by the use of a forward airflow model; or (3) by 

the use of an inverse airflow model. Experiments are time-consuming and expensive and 

may not provide as much information as an airflow model. Forward airflow models 

utilize specific details about a space or building to estimate airflow patterns. Details 
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include physical dimensions, layout, diffuser and exhaust locations, supply airflow rates, 

etc. Forward models also utilize "typical" building data, such as building envelope 

airtightness for a given construction type and year. Inverse airflow models, on the other 

hand, could utilize information collected from commonly installed sensor systems, such 

as airflow rates and/or velocity, temperature, or carbon dioxide (C02) concentration, 

along with physical dimensions, layout, diffuser and exhaust locations, etc. to estimate 

airflow patterns. Once the airflow pattern within a space or building is known, 

information such as contaminant distribution, air change rates, infiltration levels, etc. can 

be predicted. One use for contaminant distribution is systematic sensor system design. 

Uses for air exchange rates and infiltration levels are building commissioning and 

retrofitting. 

Sec. 1.3.1 summarizes the literature on forward and inverse airflow models. The 

development and utilization of forward airflow models has been more established in the 

literature than for inverse airflow models. Therefore, Part 1 of this research (Chapter 2) 

presents a framework for utilizing forward airflow models in systematic sensor system 

design for different types of zones. To utilize the abundance of information provided by 

commonly installed sensor systems, Part 2 of this research (Chapter 3) presents a 

framework for utilizing inverse airflow models in estimating airflow patterns for different 

types of zones. Though the work in Chapter 3 can provide important findings, a more 

practical and wider application of inverse modeling is to estimate the airflow pattern 

within a whole building. Therefore, Part 3 of this research (Chapter 4) presents a 

framework for utilizing inverse airflow models for estimating the airflow pattern within a 

whole building. 
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Figure 1-1. Framework for systematic indoor air sensor system design and 
outline for this research. 

Sec. 1.3 reviews the literature on the components of systematic sensor system 

design, which include airflow modeling and sensor system design methods. Sec. 1.4 

discusses the research needs and motivation behind this research. Sec. 1.5 discusses the 

scope and hypotheses that were tested in this research. Chapters 2-4 discuss the results of 

testing each research hypothesis. Each chapter concludes with possible publications to be 

generated, conclusions, and recommendations for future work. Chapter 5 provides 

general conclusions and recommendations for future work. Finally, Chapter 6 discusses 

the long-term goals of this research. 

1.3 Literature review 

1.3.1 Airflow and contaminant transport simulation 

Obtaining airflow patterns and contaminant distribution from an experimental 

setup can be cumbersome and expensive. Depending on the measurements desired, 

obtaining them might also be difficult. Therefore, it is advantageous to the researcher to 
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use airflow and contaminant transport simulation models (now further referred to only as 

"airflow models") in order to obtain airflow patterns and contaminant distribution. These 

models can either be forward or inverse models. Forward modeling starts with known 

initial and boundary conditions. Airflow and contaminant transport calculations are then 

carried out through space and time. On the other hand, inverse models start with 

information about current conditions, most likely partial measurements of airflow 

patterns or contaminant distribution. The inverse model then makes estimates about the 

past, provide additional information on current conditions, or makes predictions about the 

future. 

Three major types of forward airflow models exist: multizone (Sec. 1.3.1.1), zonal 

(Sec. 1.3.1.2), and computational fluid dynamics (CFD) (Sec. 1.3.1.3). Specialized 

experiments, such as fan pressurization and tracer gas tests, have been used to improve 

the performance of multizone airflow models(Sec. 1.3.1.4). Contaminants are either 

mathematically modeled by an Eulerian or Lagrangian approach (Sec. 1.3.1.5). The 

multizone and zonal models use the former approach while CFD can use either one. 

Coupling between multizone and CFD models has been performed in order to 

simultaneously exploit the advantages of and overcome the drawbacks of each airflow 

model (Sec. 1.3.1.6). Inverse modeling methods are discussed in Sec. 1.3.1.7. 

1.3.1.1 Multizone modeling 

The multizone model considers a building as a network of interconnected nodes. 

Each node represents a physical space, called a zone. Each zone is considered well-mixed, 

which means that parameters such as temperature, pressure, and contaminant 

concentration are spatially uniform within a zone. Zones are connected to one another via 
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flow elements, which can be cracks, windows, doors, fans, etc. At least one zone must 

connect directly to a constant pressure zone, often the ambient zone. The constant 

pressure zone serves as a boundary condition, giving the solution algorithm a starting 

point for solving the unknown airflow network. 

Two popular multizone software are CONTAM [5] and COMIS [6], CONTAM 

was developed by the National Institute of Standards and Technology (NIST), and 

COMIS was developed by the Lawrence Berkeley National Laboratory (LBNL). Both 

were developed in the 80s. Each multizone model has been used in a variety of 

applications and validated in the literature. The ability of multizone models to couple 

with other software, such as energy simulation software, has also made their use popular 

m . 

Multizone models have been evaluated in terms of: (1) program integrity; (2) 

comparison with experimental data collected in controlled environments; and (3) 

comparison with experimental data collected in field studies. The first test (program 

integrity) ensured that the flow equations which form the backbone of the models were 

executed correctly [8]. The second test showed that results from multizone model 

simulations were in reasonable agreement with data from controlled experiments [8], 

Lastly, the third test showed that multizone models made reasonable predictions of 

airflow even when experiments were performed in real-world environments [8-11], 

The well-mixed assumption is often times not a valid one. Spaces with strong 

velocity or thermal jets and large spaces, such as atria and auditoria, are obvious 

candidates for more sophisticated airflow models. Nevertheless, it has been shown that 

the well-mixed assumption can hold under certain conditions [12], For instance, upper 
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limits for temperature gradients and Archimedes number exist for which the well-mixed 

assumption is still valid [12]. Further, under certain conditions, the air momentum effect 

(from a strong velocity jet) can be neglected too [12]. 

1.3.1.2 Zonal modeling 

Many of the same principles and assumptions used in the multizone models are 

applied in zonal models. Buildings are represented by a network of nodes, each node 

representing a well-mixed zone. The difference, however, is that each node in the zonal 

model is a subzone, which is a non-physical section of a physical zone. There are two 

types of subzones: standard and mixed. The standard subzone is considered well-mixed 

and flow between standard subzones is pressure-driven, just like in multizone models. 

The mixed subzone contains a well-mixed portion and a driving element, such as velocity 

jet or thermal plume. Flow between the portions with a driving element is governed by 

designated mass flow relationships, depending on the type of element. Multizone models 

do not include driving elements. 

The inclusion of driving elements in zonal models has been shown to improve 

their accuracy over multizone models. Comprehensive validation studies have been 

performed for zonal models. Both two-dimensional and three-dimensional environments, 

as well as natural and mixed convection conditions have been used to test the 

performance of zonal models [13-16], Within zonal models are different variations: 

power-law (PL) models, specific driven flow (SDF) models, and surface drag (SD) 

models [17-18], PL models represent the flow between subzones as a function of pressure, 

just like in multizone models. SDF models include equations that describe ideal velocity 

jet and thermal plume flow. Finally, SD models account for drag forces on airflow caused 
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by nearby surfaces. These variations resulted in different estimates of airflow patterns -

some better than others. Empirical constants in zonal models have been varied in order to 

improve performance [19]. 

Since each physical zone is subdivided for zonal modeling, questions arise as to 

the appropriate size of the subzones. It was shown that decreasing the size of subzones 

did not significantly improve results when compared to experimental data, as is often the 

case when using more sophisticated airflow models like CFD [13]. Nevertheless, it has 

been recommended that the size of a standard subzone be between 0.25 and 1.5 m [20], 

The size of a mixed subzone should capture the entire flow element [21]. Being able to 

accurately mathematically represent flow between subzones, where no physical 

wall/crack/opening exists and experimental values are nearly impossible to obtain, 

challenges the accuracy of zonal models [14], 

Various simulation environments have been used to execute zonal models. They 

include MACSYMA [13] and SPARK [16]. Enhancements to the multizone model 

COMIS resulted in the model, COwZ (COMIS with subzones), developed by the 

QUESTOR Environmental Modeling Group [22], 

Multizone and zonal models are suitable for whole building and whole heating, 

ventilating, and air-conditioning (HVAC) system simulation. They are useful for 

modeling different types of ventilation strategies and certain dynamic effects. Dynamic 

effects include HVAC operating schedules and changes in occupancy and weather 

conditions, among others. These effects are currently much more difficult or even 

impossible to model in more sophisticated models such as CFD. 
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1.3.1.3 Computational fluid dynamics (CFD) 

Computational fluid dynamics (CFD) is a sophisticated airflow and contaminant 

transport model that has been around since the 70s. First developed for use in aircraft 

design, it has since been utilized in many other applications, including indoor air 

applications. 

CFD numerically solves the partial differential equations governing fluid flow and 

contaminant transport (Navier-Stokes equations). On the other hand, multizone and zonal 

models algebraically solve governing equations that neglect momentum and mass transfer. 

Many numerical methods have been developed to solve these equations. Especially 

challenging is the modeling of turbulence in fluid flow, which is random disturbance in 

fluid flow. In order to account for turbulence, additional equations and approximations to 

the Navier-Stokes equations are included in the solution procedure. There are three major 

classes of CFD models: direct numerical simulation (DNS), large eddy simulation (LES), 

and Reynolds-averaged Navier-Stokes (RANS) [23]. DNS directly solves the Navier-

Stokes equations without approximation. Thus, DNS requires a fine grid and a small time 

step in order to carry out the solution procedure. DNS requires a significant amount of 

computing power for real-world applications. LES simulates the large-scale eddies 

caused by turbulence but makes approximations for the small-scale eddies. Thus, a 

coarser grid compared to that necessary for a DNS model can be utilized. RANS utilizes 

mean flow parameters in the solution procedure. Thus, solution time is shorter compared 

to DNS and LES. The appropriateness of any CFD model is dependent upon the 

application. Those that have been found appropriate for indoor airflow will be discussed 

below. 
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For indoor airflow, most of the literature utilizes the RANS class of CFD models 

[23-26]. Given the size of typical indoor spaces, requiring the fine grids necessary to 

utilize the DNS and LES could lead to computational spaces beyond the capability of 

current desktop computers. Studies that have evaluated the performance of RANS for 

indoor airflow will be discussed below. RANS models are classified into two types: eddy 

viscosity and Reynolds stress models [23]. The RANS models described below are the 

standard K-S, standard K-CO, SST K-CO, RNG K-S, and zero-equation models. 

The standard K-S model is a commonly used CFD model for a wide variety of 

applications [26]. It was developed for fully turbulent and high Reynolds number flows 

[23, 27]. It requires the solution of two additional equations for turbulent kinetic energy K 

and dissipation rate s. In contrast, the standard K-CO model (co being turbulence frequency) 

can be used for low Reynolds number flow [27]. The Shear-Stress Transport (SST) K-CO 

model combines the modeling principles of both the standard K-S and K-CO models [27], 

Near the wall, the model uses K-CO principles, where the flow is relatively slow. The 

remainder of the space uses K- S principles. The SST K-CO model showed the best 

agreement with experimental data compared to the standard K-S, RNG K-S, and laminar 

model [27], 

The standard K-S, standard K-CO, and SST K-CO models are eddy viscosity models. 

They fail to capture complex flow structures, such as swirling, which commonly found in 

indoor airflow [23]. Thus, Reynolds stress models were developed. One Reynolds stress 

model is the Renormalization Group (RNG) K-S model. It has shown to be more accurate 

and reliable for a wider class of indoor airflows than the standard K-S model [25-27]. 

Though the RNG K-S model outperforms the standard K-S model, its drawbacks are: (1) a 
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greater number of additional equations need to be solved; (2) computations are less stable; 

(3) computing effort is five to twenty times greater than using the standard K-S model; 

and (4) improvements to the results that the RNG K-S model makes over the standard K-S 

model are often not significant enough to warrant the additional computational effort [26]. 

The additional equations in CFD models are used to model turbulence. Recently, 

there has been an emergence of a new zero-equation eddy-viscosity model [23, 28]. 

Instead of representing turbulence with partial differential equations, zero-equation 

models represent turbulence with algebraic functions. The zero-equation turbulence 

model has shown great potential for use in indoor airflow because of its simplicity and 

reduction in computing time compared to the standard K-S model [28]. The indoor zero-

equation model performed well, in terms of airflow pattern and temperature profile, under 

mixed convection conditions and low Reynolds number flow [24], which is typical of 

indoor air flow. 

1.3.1.4 Multizone model tuning 

Efforts have been made to improve the performance of forward airflow models, 

namely the multizone models, using specialized experiments such as fan pressurization 

and tracer gas tests (discussed briefly in Sec. 1.3.5 and in more detail in Chapter 4). 

Airflow model tuning focuses on reducing the uncertainty in the parameters of a 

multizone model in order to improve the accuracy of the estimated airflow patterns and 

contaminant transport. 

Musser et al. [29] proposed a four-stage tuning process for improving the 

performance of a CONTAM model of a building: 



www.manaraa.com

12 

(1) Utilize construction documents and building leakage data found in the literature to 

assign building envelope airtightness values to the CONTAM model. 

(2) Modify simulated building envelope airtightness values with actual ones obtained 

from fan pressurization tests. 

(3) Modify simulated bulk airflow rates from fan-driven flows, such as at an air 

handling unit, with measured ones. 

(4) Modify simulated zone supply airflow rates so that simulated air change rates 

match those obtained from tracer gas tests. Smoke tests can be used to verify 

pressurization of zones. 

The performance of the tuned CONTAM model was evaluated using a correlation 

coefficient and mean square error as defined by the ASTM D5157 [30]. These metrics 

quantify the difference between measured and predicted concentration of a contaminant. 

The measurements of bulk airflow rates in Step 3 for a mechanically ventilated 

building required about one day and were more helpful in improving the accuracy of the 

tuned CONTAM model than the other measurements/experiments. The tracer gas tests in 

Step 4 required the most time and effort, and the fan pressurization test in Step 1 required 

a half-day. Thus, the effort required to tune CONTAM model parameters did not always 

translate into an equal improvement in model performance. 

Firrantello et al. [31-32] proposed a formal approach for CONTAM model tuning. 

Factorial analysis was used test the effect of CONTAM parameters on model 

performance for a synthetic test building. Those parameters that were found to 

significantly affect model performance would be subject to tuning. Model performance 

was evaluated using the percentage of incorrect interzonal airflow direction. It was 
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assumed that actual interzonal airflow direction was known prior to tuning. The 

magnitude of any errors was not taken into account. 

Values for tuning the CONTAM model of the synthetic test building was taken 

from a synthetic target building. The researchers did not recommend any techniques to 

obtain these values in a real building, such as interior/exterior door leakage and 

interior/exterior wall leakage. In fact, when tuning the CONTAM model for a real test 

building, the researchers did not tune the parameters found significant for model 

performance for the synthetic test building. They measured airflow rates through the air 

handling unit, diffusers, and exhausts. Leakage properties were taken from construction 

documents and typical leakage data in the literature. The actual interzonal airflow 

directions for their real test building were obtained using chemical smoke bottles. Jeong 

et al. [33] demonstrated that smoke gun tests did not give reliable indication of interzonal 

airflow, especially when the pressure difference between two spaces was less than the 

uncertainty in the pressure measurement. Nevertheless, Firrantello et al. [31-32] reported 

a 50% improvement in the prediction of interzonal airflow direction for their synthetic 

test building, and 10-30% improvement for their real test buildings. They showed that the 

formal approach to tuning improved the performance of a CONTAM model better than 

using randomly selected measurements. 

As Price et al. [34] summarized: (1) there are hundreds of parameters in any 

building; (2) their values are subject to, sometimes large, uncertainty - to the point where 

the value cannot always be determined; (3) experiments to tune the parameters are often 

time-consuming, expensive, and do not translate into an equal improvement in results (as 



www.manaraa.com

demonstrated in [29]); and lastly (4) large uncertainties in the results can still remain even 

after careful measurements or parameter estimation are made. 

1.3.1.5 Modeling chemical biological warfare (CBW) agents 

Contaminants are found in gaseous and particulate forms. To model them using 

CFD, the differences in the transport mechanism of each contaminant type must be 

considered. Gaseous contaminants are modeled in the same way as the airflow. 

Particulate contaminants, on the other hand, are modeled either one of two ways: 

Eulerian or Lagrangian. The Eulerian approach treats a group of particulates as a 

continuum. The Lagrangian approach treats each particulate as a discrete element. One 

study found that both approaches produced similar concentration distributions in enclosed 

spaces [35], The Eulerian approach tended to "smooth" out concentration distributions 

and gradients. The Lagrangian approach could provide information on each individual 

particle. Due to this level of detail, it is not surprising that the Lagrangian approach 

requires a higher computational time than the Eulerian approach. 

1.3.1.6 Coupled CFD models 

To use CFD successfully, one must possess specific knowledge about fluid 

dynamics theory and numerical techniques. Further, executing CFD can require great 

computational effort. Therefore, researchers have attempted to find a middle ground 

between simple models, like multizone model, and more complex models, like CFD. 

Coupling of CONTAM and the indoor zero-equation CFD model has been tested with 

good performance [36]. The coupled model performed just as well as the standard K-E 

model with regards to air velocity prediction. As for contaminant distribution, the 
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coupled model compared well with experimental results and better than the multizone 

model alone. A coupled multizone-CFD model used in natural ventilation applications 

also performed well compared to a standalone CFD model [37]. A study has been 

completed coupling CFD with COMIS [38], Computational time for a coupled CFD-

multizone model is significantly less than using CFD alone. Research continues on this 

topic, such as where information from the two models is coupled and how much 

information is exchanged [39]. 

1.3.1.7 Inverse airflow and contaminant modeling methods 

Whether using the simpler multizone and zonal models, or the more complex 

CFD model, forward modeling requires gathering information on a zone or building. 

Information includes architectural and mechanical plans and specifications. If the 

building is in the design or construction phase, this information may be fairly accessible. 

In contrast, this information may be inaccurate, incomplete, or missing for existing 

buildings. Gathering the information by field measurements can be tedious and time-

consuming. 

Forward modeling methods start with initial and boundary conditions. Airflow 

and contaminant transport calculations are then carried out in space and time. Inverse 

airflow modeling methods use complete or partial information about current conditions to 

make estimates about the past, provide additional information about current conditions, 

or make predictions about the future. Inverse modeling is often less computationally 

intense than CFD and even multizone or zonal models. Inverse modeling methods found 

in the literature are discussed in this section. 
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Nonlinear least-squares minimization method was used to fit mass balance 

equations of airflow and concentration equations to experimental tracer gas data [40]. 

Interzonal airflow rates (or the airflow rates between zones) were estimated. Estimated 

interzonal airflow rates agreed well with the experimental data. The experiment was 

conducted using two tracer gases in a real two-zone building. A total of four equations 

were simultaneously fit. The solution was subject to two continuity equations, one for 

each zone. As the number of zones increases, the use of this method may prove both 

experimentally and mathematically challenging. Thus, this inverse modeling method may 

be limited to small buildings. 

Maximum likelihood estimation (MLE) was used to determine a space air change 

rate and supply CO2 concentration using CO2 measurements inside a synthetic single 

zone [41]. MLE equations were derived from mass balance equations in order to 

determine the unknown parameters that maximized the probability (or likelihood) of 

obtaining the actual C0 2 measurements. The estimated space air change rate and supply 

CO2 concentration was then used heuristically to determine CO2 generation rates. This 

inverse modeling method was not extended to multiple zones. Further, its proposed 

heuristic method to estimate CO2 generation rates was not shown to be robust. 

A direct search optimization method was used to fit three inverse models to CO2 

concentrations from CFD simulations [42]. The inverse models were mathematically 

based on mass balance relationships for a synthetic single zone. The first inverse model 

tested was a quasi-static equilibrium model, the second one was a two-zone transient 

model (the synthetic single zone was subdivided into two non-physical zones), and the 

third one was a three-zone transient model (the synthetic single zone was subdivided into 
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three non-physical zones). Subdivision of the synthetic single zone was performed in 

order to test the effects of imperfect mixing on the performance of the inverse models. 

The number of unknown parameters was smallest in the first model and largest in the 

third model. The CO2 predictions made by the simplest of the mathematical models were 

sufficiently accurate for DCV system control purposes. Estimated energy use of a 

simulated DCV system, and subsequent cost savings, using the CO2 predictions from the 

three tested inverse models were similar. Thus, the effects of imperfect mixing did not 

affect inverse model performance for DCV system control purposes. This inverse 

modeling method was not extended to multiple zones. 

Both steepest descent and simulated annealing were used to determine the 

subzonal volumes and inter-subzonal airflow rates of a partitionless building [43], similar 

to the study just discussed. The objective was to determine the unknown parameters that 

minimized the sum of squared differences between the synthetic and predicted subzonal 

tracer gas concentrations. The synthetic tracer gas concentrations provided to the inverse 

model varied in amount (i.e., how many tracer gas releases), accuracy, and frequency. In 

essence, the study tested the effects of limited and inaccurate concentration data on the 

performance of the inverse model. The authors showed that even large uncertainties in 

the estimated subzonal volumes and inter-subzonal airflow rates could still result in 

reasonable predictions in tracer gas concentration. This study was designed for use in 

large, partitionless areas of buildings such as atria or gymnasiums. The authors reported 

that their results may not be applicable to spaces that exhibit significantly different 

volumes or airflow rates from the ones tested in their study. 



www.manaraa.com

Artificial neural networks (ANN) have also been used as an inverse modeling 

method. ANN is essentially a black-box that determines input-output relationships by 

first training itself using known input-out relationships. Complete training sets must be 

available in order for input-output relationships to be established by ANN. Obtaining 

complete training sets may prove challenging for indoor air applications, depending on 

the measurements needed. Nevertheless, ANN was shown to have potential in accurately 

determining input-output relationships for a complex system such as airflow in an urban 

environment [44], ANN used historical NOx measurements gathered in an urban 

environment as training sets. After training, the ANN showed promise in being able to 

predict hourly NOx concentrations. 

The governing equations that describe indoor airflow and contaminant transport 

can also be "reversed" in inverse CFD modeling. Utilizing velocity and contaminant data 

from a current time, the inverse CFD model was able to determine the location and start 

of a contaminant release. More details can be found in Sec. 1.3.4. 

1.3.1.8 Summary 

Both forward and inverse airflow modeling methods were discussed. Multizone, 

zonal, and CFD models are forward modeling models. Multizone and zonal models are 

relatively easy to set up and computationally efficient. However, the literature has shown 

that their results are not as accurate as CFD results when compared to experimental data. 

Efforts have been made to tune, or improve the performance of, multizone airflow 

models using building data and measurements. CFD is more challenging to set up and 

more computationally intense than multizone and zonal models. Inverse modeling 

methods have the potential to take advantage of the simplicity of multizone and zonal 
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models and the accuracy of CFD models. Requiring far less setup and computational 

effort than forward models, inverse models have been shown to be acceptably accurate 

for certain applications. 

1.3.2 Optimization 

Optimization methods seek to locate points within a search domain that are either 

maxima or minima. Optimization methods can be broadly categorized into three types: 

calculus-based, enumerative, and heuristic [45]. 

Calculus-based searching methods are distinguished into indirect and direct 

approaches [45]. Indirect methods search for a point in the domain where the slope in all 

directions is zero. Direct methods start from a single point and continue the search in the 

direction of the steepest gradient. Calculus-based methods require the existence of first 

and second derivatives, and continuity in the domain. Further, if the search space contains 

multiple local minima or maxima, calculus-based methods may get "stuck" in these 

points and not find the global minima or maxima. 

Whereas the calculus-based methods start at a random location, enumerative 

methods search the domain one location at a time [45]. These methods, though not 

constrained to the need for derivatives and continuity, require large search times when the 

domain is large. They are also prone to being "stuck" in local minima or maxima. 

Because of this, they have not been applied to large search domains, such as indoor air 

applications. 

The last type of optimization method is heuristic (or stochastic/probability-based). 

Random choice (or probability) is used as a tool during the search process. Stochastic 

optimization methods have been shown to be very useful in solving problems that exhibit 
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high nonlinearity and may have many local minima/maxima [46]. The example problems 

in [46] were taken from material science, chemical engineering, and applied statistics. 

In [47], simulated annealing (SA), simultaneous perturbation stochastic 

approximation (SPSA), and genetic algorithm (GA) were considered for indoor air sensor 

system design. The authors chose GA as the most suitable method of the three. GA is a 

robust optimization method for four reasons [45]: (1) it codes the parameter set into 

finite-length strings instead of using the parameters themselves; (2) the method searches 

from a population of points, not just one point at a time. This avoids the finding of local 

maxima/minima; (3) the method uses payoffs or objective function/fitness values, not 

derivatives or other auxiliary information; (4) the method uses probabilistic, not 

deterministic rules. Though it is not the most efficient optimization method for solving 

nonlinear problems [48], GA is an optimization method that is useful in a wide variety of 

applications. 

1.3.3 Sensor system design methods 

Sensors are used to collect different types of information in different applications. 

The applications discussed here are in municipal water networks (Sec. 1.3.3.1), the 

chemical process plant industry (Sec. 1.3.3.2), outdoor air applications (Sec. 1.3.3.3), and 

indoor air applications (Sec. 1.3.3.4). Studying these applications highlights the design 

methods and criteria that are used to develop sensor systems that help to protect human 

health and well-being. Selecting appropriate sensors for each of these applications is not a 

trivial task. A report by the Department of Defense's (DoD) Defense Advanced Research 

Projects Agency (DARPA) identified at least twelve sensor characteristics important in 

sensor selection [49]. They are: sensitivity, size, weight, power consumption, unit cost, 
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reliability factor (in months and in weeks), operating cost, false positive rate (low and 

high disruption response), response time, and detection confidence. Initial cost of a 

sensor is one of the most important factors in the selection process. Thus, engineers 

designing sensor systems need to adopt design methodologies that optimize placement of 

a limited number of sensors. 

1.3.3.1 Municipal water applications 

Municipal water networks are vulnerable to water contamination, either accidental 

or intentional. Their large coverage area also makes them effective carriers of such 

contamination to a large, diverse population if the event is not dealt with in a reasonable 

amount of time. Thus, researchers have been working to find ways to determine sensor or 

monitoring locations along municipal water networks that can quickly detect 

contamination. 

Design objectives include minimizing sensor system cost, minimizing detection 

time, minimizing exposure to the population served by the water network, minimizing 

consumption of contaminated water prior to detection, and maximizing the likelihood of 

detection. These objectives are met over a set of probable contaminant events, which are 

simulated using contaminant transport models [50]. Sensor system design to minimize the 

impact of "high-consequence" (though perhaps not as probable) events, such as terrorist 

attacks, were explicitly considered in [51] and compared to sensor systems designed for 

probable events. 

It was shown that many design objectives exhibit diminishing returns, or 

submodularity, as sensors are added to a system [52]. The same study also accounted for 

the unit and installation costs associated with each additional sensor when evaluating 
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submodularity. Another study explored the effects of designing with imperfect sensors 

[53]. 

Besides contaminant detection, sensor system design methods were also 

employed to optimize the placement of booster stations [54-55], The objective was to 

minimize the total mass of chlorine supplied to the system while maintaining an 

acceptable level of disinfection at particular locations in the water network. In [56], an 

additional objective was simultaneously met: maximize the volume of water, that has 

minimal disinfectant by-products, supplied to customers. 

Sensor system design (optimization) methods used in municipal water 

applications included mixed integer programming, greedy algorithm, branch and bound 

techniques, genetic algorithm, and enumeration. 

1.3.3.2 Chemical process plant applications 

Chemical process plants rely on sensor data for the control of its systems, quality 

assessment, and failure detection. Bagajewicz [57] gave a good summary of the factors 

that affect the performance of chemical process plant sensor systems, which can be 

extended to many other fields as well. Any data collected by a sensor system should be 

accurate, precise, and reliable (i.e., accurate and precise even under sensor failure). A 

sensor system includes both the instrumentation/ sensors (hardware) used to collect and 

software used to reconcile the data. 

Sensor system performance indices, such as redundancy, observability, and 

robustness are commonly found in the literature on sensor system design for chemical 

process plants. Designing for redundancy ensures that in the presence of a sensor failure, 

the quantity of interest (or variable) is still able to be measured or estimated by some 
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other means (sensor or software) (i.e., the variable remains observable). Designing for 

redundancy also ensures that the most reliable measure of a variable is obtained. For 

instance, if the measurement of a variable is obtained by more than one method (sensor or 

software), redundancy allows the software to utilize the precision of each method and 

statistical tools to produce the most reliable estimate of the variable. Lee [58] devised a 

method to evaluate the validity of a sensor measurement based on the spatial redundancy 

of sensors. 

The process model used to design a sensor system will not be (and cannot be) an 

exact representation of the actual process. It will contain approximations and errors. Thus, 

designing for sensor system robustness means any changes or errors in the process model 

will not significantly compromise the performance of the sensor system [59], Also, the 

performance of each sensor in a sensor system, such as its fault occurrence and failure 

probability, may be uncertain. This can affect the reliability of the sensor measurements. 

And so the performance of a sensor system should not be significantly affected by sensor 

uncertainties. Ali and Narasimhan [60] studied the effects of using sensors of equal and 

unequal sensor failure probabilities on reliability. Bagajewicz and Sanchez [61] studied 

the effects of adding sensors in different locations and of different type on reliability. 

With many design objectives, lexicographic optimization has been used [59], 

which optimizes design objectives in decreasing order of preference. 

1.3.3.3 Outdoor air applications 

Monitoring outdoor air contaminant levels is met with many challenges. Outdoor 

weather conditions, such as wind, temperature, and precipitation, can vary continuously 

and affect the accuracy of measurements collected by monitoring equipment. 
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Furthermore, the capital cost of the monitoring equipment is large, as is the cost of 

maintenance. Thus, a limited number of monitoring stations are sparsely located 

throughout any particular region of interest. The selected locations for these monitoring 

stations are critical in the detection of contaminants. 

In an outdoor application, buildings, trees, and other elements are obstacles to air 

and contaminant flow. They are also obstacles to detection by a static sensor network. 

Nevertheless, two studies designed sensor networks for outdoor monitoring without 

considering airflow patterns [62-63]. The first study superimposed a uniform grid onto 

the desired monitoring area. The authors assumed that the probability of detecting a 

contaminant by any sensor varied with the distance between the sensor and the release 

location. The objective was to arrange sensors such that every grid point was covered by 

a threshold probability of detection. The second study arranged sensors such that each 

grid point was covered by at least the coverage area of a sensor. Both studies showed that 

a systematic approach to sensor placement outperformed random sensor placement in 

determining the minimum number of sensors needed for the same level of protection. 

Taking into account airflow patterns within a city block, CFD was used to 

determine optimal sensor locations [64], Simulations accounted for various wind 

conditions (direction and speed). Optimal sensor network configurations were determined 

for each wind condition. Exposure to the contaminant was then calculated. It was found 

that the sensor network configuration that minimized exposure for all wind conditions 

was not as effective compared to configurations optimized for each wind condition. The 

authors recommended that sensors could be moved depending on season, and thus 

prevailing wind direction, to optimize detection throughout a year. Another CFD study of 
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a city block utilized a heuristic approach to optimal sensor placement [65]. The study 

demonstrated that as the number of wind directions and release locations increased, so 

did the number of required sensors. The approach required multiple iterations of 

computationally-intensive simulations. 

Over time, the accuracy of sensors diminishes due to environmental factors, such 

as humidity and dust accumulation. Calibration of each sensor in a network can be very 

time-consuming. Thus, it would be beneficial to develop an auto-calibration method. 

Using only measurements from nearby government monitoring stations during conditions 

when measured contaminant levels were low, a private monitoring station was able to 

auto-calibrate its sensor at least once a month throughout a year [66]. Contaminant 

measurements compared well between the calibrated monitoring station and a gas 

analyzer placed near the same station. This method may be extended to auto-calibration 

of indoor sensors. 

1.3.3.4 Indoor air applications 

Indoor air sensor systems can be used to monitor indoor air parameters, such as 

temperature, relative humidity, and contaminant concentration. The information collected 

can be used to: (1) evaluate IAQ and maximize energy efficiency and (2) detect the 

presence of harmful indoor contaminants. The contaminants used to evaluate IAQ are 

usually present during normal occupancy and building operation. Common contaminants 

are: CO2, dust, and VOCs. Indoor air sensor systems could also detect the presence of 

harmful contaminants, which are not present during normal occupancy, including those 

used for terroristic purposes, such as anthrax and sarin gas. 
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IAQ and energy efficiency are considered one application because the two should 

be balanced in building system design. In order to maintain acceptable IAQ, ventilation 

(or outdoor airflow) rates are modulated. Higher ventilation rates have been shown to 

improve IAQ [67]. However, higher ventilation rates also require greater energy 

expenditure. A ventilation system used increasingly more in the building industry that 

attempts to balance acceptable IAQ with energy use is called demand-controlled 

ventilation (DCV) systems. Sensor systems for ventilation purposes could have great 

benefits for DCV systems. Ventilation rates are modulated in DCV systems in 

accordance to measured parameters inside the building. Modulating ventilation rates 

helps to maintain adequate IAQ while also reducing energy consumption [68]. Indoor 

measurements used as control parameters for DCV include CO2, water vapor, VOC, and 

particles [3]. The most widely used parameter is CO2. 

An article published in the ASHRAE Journal, which is a publication written by 

and for practicing mechanical engineers, provides guidelines for CO2 sensor placement 

[69]. Systematic decisions on the number of sensors and their placement within a zone or 

building is currently not common practice. The effects of intuitively-designed sensor 

systems on IAQ and energy use are often never verified with simulation models nor 

quantified after installation. Therefore, it is necessary to develop a design methodology 

for indoor air sensor systems that will, in actual operation, best maintain IAQ and reduce 

energy waste. 

To design sensor systems for protecting indoor environments, airflow modeling 

has been used along with optimization techniques. Airflow models provide the 

concentration data for which an optimization method identifies sensor locations based on 
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given objective functions. The average predictions of contaminant concentration of a 

multizone model was the search domain for GA to optimally locate a limited number of 

sensors in an office level [47]. Detailed contaminant concentration results from a CFD 

model provided data for sensor placement [70-71]. However, in the studies using CFD, 

no systematic approach to sensor placement was used. Sensor placement was decided 

upon based on concentration profiles taken at a few selected locations. These locations 

were most likely chosen based on experience or intuition. 

In these studies, there was no systematic selection of an airflow model for sensor 

system design. A sensor system design using multizone and zonal model data may not 

meet design objectives during actual operation since it has been shown that their results 

are not as accurate as CFD results when compared to experimental data (Sec. 1.3.1). A 

sensor system design using CFD model data may meet design objectives during actual 

operation, but the time and effort required to simulate a building in CFD may be 

impractical. Thus, the utilization of either a multizone or CFD model for sensor system 

design is a cost-benefit decision that requires a systematic comparison between the 

performances of the sensor systems designed by the different airflow models. 

For indoor applications, inverse models have yet to be studiedfor use in sensor 

system design. Inverse models could potentially estimate airflow patterns and 

contaminant transport based on a limited number of sensor readings. No longer would 

time-consuming forward modeling be required in order to obtain contaminant data for 

sensor system design. Inverse models could provide this data with the ease and efficiency 

of multizone and zonal models, but with the accuracy of CFD models. 
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Sensor systems for protecting the indoor environment have been designed to 

minimize detection time [47, 70-72], However, due to the highly harmful and even 

deadly effects of exposure to CBW agents, design objectives should also include 

minimizing occupant exposure. As more data becomes available on the human dose-

response relationships for CBW agents, sensor systems could be designed to minimize 

risk. Risk is the probability of an outcome, such as an adverse health symptom or even 

death, at given exposure levels. Decision makers will need to determine the maximum 

level of risk, and thus the maximum occupant exposure, acceptable in each case. How the 

distribution of risk changes with time (given more sensor data) can also be evaluated [73], 

1.3.3.5 Summary 

Sensor systems have been shown to be useful in many applications. In municipal 

water networks, appropriately located sensors reduce the detection time of contaminants 

and thus reduce exposure to the public. For chemical process plants, formal metrics 

ensure certain levels of sensor system performance. Studies of sensor system design for 

outdoor applications have utilized both statistical and CFD models to predict the transport 

of contaminants in order to locate sensors. For indoor applications, sensor systems have 

been designed for either IAQ purposes or for protecting the indoor environment. 

However, sensor selection and placement is currently intuitively-based. Further, the 

literature has not discussed systematic selection of the airflow model used to generate the 

contaminant data for sensor system design. Lastly, the potential for utilizing inverse 

models in sensor system design has not been reported in the literature. 
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1.3.4 Characterizing contaminant source 

Characterizing a contaminant source includes its location, and strength (or rate) 

and duration of release. It is important information for first responders who seek to 

contain and eliminate a contaminant, whether indoors or outdoors. The methods reviewed 

here for characterizing a contaminant source are inverse in nature. They utilize 

information on current conditions to estimate the characteristics of a contaminant release 

event. 

1.3.4.1 Outdoor air applications 

Outdoor air contamination can spread quickly and affect large populations - many 

more people than would be inside a building. It is important to locate sources of outdoor 

air contamination to both protect an exposed region and also to assign responsibility for 

the contaminant release when necessary. 

Using simulation models, synthetic source emission data can be simulated as a 

result of possible release locations. Synthetic measurements are "taken" at possible 

monitoring sites. An optimization method is then employed to select the release location 

that most likely resulted in a given set of synthetic measurements. GA was used in [74-75] 

to determine source apportionment factors, which are assigned to each possible release 

location that could have resulted in the measurement at a monitoring site. Thus, the 

release location(s) with the highest source apportionment factors are the most probable 

location(s) of contaminant release. Single releases were more easily identified than 

multiple releases [74], GA was also used to determine the wind direction, two 

dimensional coordinates of the source location, and the source strength [76]. 
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Improvements in prediction could be made by implementing a hybrid GA. Hybrid 

GA couples GA with other optimization methods. Hybrid GA was shown to improve 

results over using stand-alone optimization methods. For instance, in [77], the researchers 

coupled GA with a gradient-based optimization method. Using the hybrid GA improved 

convergence time and resulted in the correct identification of the global minima. In 

addition to using hybrid GA, sensitivity analyses on GA parameters also helped to 

expedite convergence [76]. 

1.3.4.2 Indoor air applications 

The methods that have been used to characterize contaminant sources in indoor 

air applications are: Bayesian statistics, artificial neural networks (ANN), Kalman 

filtering, inverse CFD modeling, inverse probabilistic modeling, and hypothesis tracking. 

Bayesian statistics was used for source locating [78-79]. It utilized a two-stage 

process. In the first stage, a number of release scenarios were simulated using a forward 

airflow model. In the second stage, synthetic measurements were collected over time for 

one of the simulated release scenarios. Bayesian statistics was then used to update (over 

time) the probability of each simulated release scenario producing the synthetic 

measurements. It was very similar to the study using GA and source apportionment 

factors to location an outdoor source. 

The effect of sensor accuracy, threshold level, and response time on the 

performance of the two-stage Bayesian method for source locating was studied [79]. It 

was shown that trade-offs must be made between different sensor characteristics. 

The advantages of the two-stage Bayesian method were: (1) stage one could be 

completed offline; and (2) depending on the airflow model selected, many release 
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scenarios could be simulated to cover a large range of release scenarios. The 

disadvantages were: (1) every possible release scenario cannot be simulated due to 

uncertainty in many factors, such as release location, release amount, etc.; and (2) as 

building size increases, the data set in stage one would increase. The time to complete 

stage two would also increase. This, this method may be impractical for real-world 

indoor applications. 

Instead of Bayesian statistics, ANN was used to perform a similar "matching" of 

release scenario to synthetic measurements [80]. However, as discussed in Sec. 1.3.1.7, 

complete training sets must be available in order for input-output relationships to be 

established by ANN. Thus, ANN may not be able to correctly identify a release scenario 

that is significantly different from the ones used to train the model. 

Kalman filtering was used to estimate source characteristics given certain inputs. 

There were many advantages to using Kalman filtering, as listed by [81]: (1) the method 

allowed solution of time-varying inputs and parameters; (2) it was able to treat some 

parameters as time-varying and others as time invariant; (3) it allowed for inclusion of 

noise in data; and (4) it generated statistics that were used to evaluate its own 

performance. Kalman filtering is most suited to linear problems. Many problems 

involving indoor air are neither linear nor well-conditioned, i.e., it is often the case that 

there are more unknowns than equations [78], 

In inverse CFD modeling, the governing equations that describe contaminant 

transport are "reversed" in order to determine source characteristics. Two inverse CFD 

modeling approaches were found in the literature: quasi-reversibility (QR) and pseudo-

reversibility (PR) [82-83]. Both approaches require detailed information on airflow 
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patterns and contaminant distribution. These can be obtained from sensor data. However, 

for the studies, they were obtained from forward CFD simulations. The QR method 

locates sources by time-reversing contaminant transport. In contrast, PR locates sources 

by first reversing airflow and then estimating contaminant transport. Both inverse CFD 

approaches were able to correctly identify source locations. However, because inverse 

CFD modeling requires adequate airflow and contaminant data of a space to act as initial 

conditions, the approach may be impractical where large amounts of sensor data are 

unavailable. In addition, both studies were performed for aircraft cabins where the air 

change rate is 20-30 air changes per hour so that contaminant transport is dominated by 

convection and thus contaminant molecular diffusion was neglected in the inverse 

equations. Inverse CFD modeling may not be appropriate for indoor applications where 

diffusion is not always negligible [83]. 

Liu and Zhai [84] gave a summary of inverse modeling methods for indoor 

pollutant tracking, including the QR method just described. Another method is an inverse 

probabilistic approach called the adjoint probability method. The researchers applied the 

adjoint probability method to both CFD and multizone models. A probability-based 

inverse CFD model was able to successfully identify the source location in an office 

space [85], as opposed to the QR and PR methods which were shown not to be 

appropriate for buildings. A probability-based inverse multizone model was able to 

successfully identify the source location in a multiple-family residence and an 

institutional building [86]. The computational time for these inverse probabilistic 

approaches was no doubt significantly less than that for the inverse CFD model. 

Nevertheless, as with the QR and PR methods, the proposed inverse probabilistic 
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approaches also required a large amount of information, like the airflow field, in order to 

identify the source location. 

Multiple hypothesis tracking (MHT) [87] technique determined the probability 

that an observation at time t, from one sensor location came from the same source as an 

observation at time U-i at another sensor location. In essence, MHT back-traced the 

transport of a contaminant from its source. Various contaminant transport tracks were 

hypothesized during sensor data collection. As more sensor data arrived, the algorithm 

converged on the most likely contaminant transport track, thus identifying the source 

location. To test MHT, source transport was modeled using by Fick's Law of diffusion, 

and thus the method is currently limited to gas transport. A constant release was 

simulated in the study. All simulations were performed in two-dimensions. Wind was 

also introduced as a pseudo-random variable. Wind arrived from only eight possible 

directions at a uniform, constant rate. There was no mention of turbulence or how it 

would affect the source plume or the results of the study. 

The uniform linear array (ULA) delay-and-sum beamformer technique utilized 

sensor data to determine the direction-of-arrival (DOA) of a contaminant plume [88]. The 

approach was based on the propagation delay of signals between sensors, which were 

placed at known distances apart. By observing the output gain of a given sensor array, the 

time and direction of an arriving contaminant plume was identified. Similar to MHT, this 

method is also currently limited to gas transport. Only a constant release of the source 

was simulated in the study. However, unlike MHT method, this study introduced 

turbulence, though it was modeled as intermittent "events" in the plume and not as an 
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additional mathematical model. The ULA method was able to predict the DOA in the 

presence of "turbulence" as well. 

1.3.4.3 Summary 

Characterizing contaminant sources is important to first responders who seek to 

contain and eliminate a contaminant. This information also helps them to reduce 

exposure to the population affected. Methods both in outdoor and indoor applications 

were discussed. Many of the methods required some amount of forward modeling. 

Reducing the amount or complexity of simulations would improve the efficiency of these 

source characterization methods. Inverse models discussed in Sec. 1.3.1.7 may provide 

the accuracy and efficiency needed for time-sensitive contaminant source 

characterization. The two methods that required no forward modeling, MHT and ULA, 

were limited to gaseous transport and did not account for or approximated turbulence. 

1.3.5 Building airflow network 

An appropriate estimate of a building airflow network is important when 

determining IAQ and energy use, and for indoor air sensor system design. It can be 

determined using forward airflow models, but detailed information about a building is 

required. Specialized experiments can also be used. Fan pressurization tests are used to 

determine building envelope airtightness, which is characteristic of the envelope 

construction. Tracer gas tests are used to determine building air change rate under 

specific outdoor and indoor conditions. Tracer gas tests can also be used to determine 

interzonal airflows. 

The limitation to current blower-door tests is that they are designed for use with 

single-zone or small multi-zone buildings. The limitations to current tracer gas tests are: 
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they use specialized equipment; and their results cannot be generalized to indoor and 

outdoor conditions that are significantly different from the test conditions. The current 

methods for determining a building airflow network are limited in their application. They 

either require a large amount of time and effort or are limited in the size of the building 

that can be considered. A more detailed review of the literature on blower-door and tracer 

gas tests is given in Chapter 4, which discusses the framework for developing a building 

airflow network inverse model. 

1.4 Research needs and motivation 

Sec. 1.2 presented the framework for systematic indoor air sensor system design, 

which first requires an understanding of indoor airflow patterns. Indoor airflow patterns 

are used to predict contaminant distribution, which in turn is used for systematic sensor 

system design. As reviewed in Sec. 1.3.1, both forward and inverse airflow models are 

available, but no systematic selection of a forward airflow model for sensor system 

design has been found in the literature. Further, the potential for utilizing inverse models 

for sensor system design has also not been found in the literature. Therefore, the first 

research need is to develop a framework for utilizing forward airflow models for 

systematic sensor system design. The second research need is develop a framework for 

utilizing inverse airflow models for systematic sensor system design. This includes 

developing an appropriate inverse model as well. 

1.4.1 Framework for utilizing a forward airflow model 

The available forward airflow models for the systematic design of indoor air 

sensor systems are multizone, zonal, and CFD models. "Indoor air sensor systems" will 

be further referred to only as "sensor system" in the text for brevity. Multizone and zonal 
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models are relatively easy to set up and computationally efficient. However, they do not 

provide as detailed airflow and contaminant results as those provided by CFD models. 

Experimental studies also show that well developed CFD models provide more accurate 

airflow and contaminant distribution results than multizone and zonal models. However, 

CFD models are more difficult to set up and more computationally intense. 

The first research need is to develop a framework for vX\Yam% forward airflow 

models for systematic sensor system design. This involves establishing criteria for 

selecting the most appropriate forward airflow model for a given zone or building. In Sec. 

1.3.3.4, the selection of an airflow model was either out of convenience (thus choosing 

the multizone model) or for proven accuracy (thus choosing the CFD model). However, 

selecting the most appropriate airflow model should not be limited only to ease in setup, 

model accuracy, and model efficiency. The selection process should also evaluate the 

model's effect on the output. The desired output here is whether or not the selected 

airflow model can provide adequate data for designing sensor systems that can meet 

design criteria. For instance, if sensor systems designed using multizone data could 

perform just as well as those designed using CFD data, there would be no justifiable 

reason to recommend using CFD models for sensor system design. 

1.4.2 Framework for developing and utilizing an inverse airflow model 

Forward airflow models all have one thing in common: they produce results 

specific for each zone or building. With each new zone or building, a new model of the 

physical system needs to be created. For rooms with regular geometry (e.g. rectangular) 

and small buildings, creation of a model may be straight-forward. However, for more 

complex geometries and larger buildings, creating a model is not a trivial task. Further, 
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for existing buildings, where accurate, up-to-date architectural and mechanical plans may 

be incomplete or missing, creating a model would first require time for field inspection. 

Thus, the development of accurate inverse models would be beneficial. Inverse models 

have the potential to provide the information on airflow patterns and contaminant 

transport for systematic sensor system design without the need for time-consuming 

forward modeling. 

The second research need is to develop a framework for utilizing inverse airflow 

models for systematic sensor system design. This involves first, the development of an 

inverse airflow model that is easy to use, computationally efficient, and also accurate. 

Inverse airflow models have several advantages over forward airflow models. (1) They 

reduce the time and effort for set up that forward models require each time a new zone or 

building configuration is encountered. (2) Interior obstructions to airflow, which include 

furniture and people, can affect contaminant transport and thus sensor system 

performance. Inverse models can use actual sensor measurements located in real spaces 

to estimate airflow patterns and contaminant transport within that space or between 

spaces. These measurements inherently capture the effects of interior obstructions, where 

forward airflow models may not be able to capture correctly or even at all. Inverse 

models could utilize information collected from commonly installed sensor systems, such 

as airflow rates and/or velocity, temperature, or carbon dioxide (CO2) concentration. 

For a single zone: One can use the estimated airflow pattern within a single zone 

for systematic sensor system design. One would like to place sensors in locations where 

the information collected is most useful. For instance, if a DCV (see Sec. 1.3.3.4) relies 

on indoor CO2 measurements to determine an appropriate ventilation rate, then the CO2 
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sensors should be placed where the measurements will best represent the indoor CO2 

level. One would not want to place the sensors in "dead" area of spaces where 

uncharacteristically high or low CO2 concentrations may exist. This would cause the 

DCV system to supply either too low or too high a ventilation rate, which adversely 

affects IAQ and energy use. The estimated airflow pattern can also be used for 

disinfection purposes. For instance, it can help to determine where a disinfectant should 

be released to maximize decontamination effectiveness. 

For a whole building: One can use the estimated airflow pattern within a building 

to determine building envelope airtightness - overall values and also in specific parts of a 

building. It can also be used to provide a quick estimate of the transport of other 

unmeasured contaminants. In an experimental study at an empty school building, 

researchers found that intuitive HVAC control measures to control the spread of a 

contaminant released at an outdoor air intake duct could actually increase the level of 

contamination [89]. An inverse model of the building could have been used to inform 

HVAC control since it could have predicted the spread of the contaminant and what 

measures to take to reduce the level of contamination, etc. The estimate provided by the 

inverse model could also direct first responders to the areas of highest contamination 

before starting decontamination. It can also be helpful in reporting the effectiveness of 

decontamination - if it is safe for people to re-enter a building. The estimated airflow 

pattern from an inverse model also has the potential to provide insight into the pressure 

distribution of a building, which is critical in spaces such as laboratories and hospitals. 

Lastly, it can be used for building commissioning. 
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1.5 Research scope and hypotheses 

Based on the identified research needs, this research was divided into three parts. 

The first part examined the effect of different forward airflow models and different zone 

characteristics on sensor system design. It identified the most appropriate forward airflow 

model for systematic sensor system design in a variety of single zones. The second part 

of this research examined inverse model development for a single zone and the sensor 

system design that collects the information for developing the inverse model. The third 

part of this research extended Part 2 by examining inverse model development for a 

whole building. It also presented a framework for utilizing information from a distributed 

sensor network to develop such an inverse model. 

The following three hypotheses were tested, each one associated with each part of 

the research: 

1. For each class of zone or building configuration, there exists a simplest forward 

airflow model to simulate indoor airflow patterns and contaminant transport for 

systematic sensor system design. 

2. There exists an inverse airflow model that is able to efficiently and accurately 

estimate indoor airflow patterns and contaminant transport utilizing measurements 

from an indoor air sensor system. 

3. There exists a framework for efficiently and accurately determining the airflow 

pattern within a whole building using a distributed sensor network. 

Chapter 2 will discuss the results of testing Hypothesis #1, Chapter 3 will discuss 

the results of testing Hypothesis #2, and Chapter 4 will discuss the results of testing 
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Hypothesis #3. Each chapter concludes with recommendations for future work. General 

conclusions and recommendations for future work are given in Chapter 5. 



www.manaraa.com

41 

2. CHAPTER 2: TESTING HYPOTHESIS #1 -
SELECTING A FORWARD AIRFLOW MODEL 

2.1 Preliminary studies 

Two preliminary studies were published in Building and Environment, a peer-

reviewed journal with impact factor of 1.192. They are included in APPENDIX A. The 

first study [90] performed systematic sensor system design on a medium-sized building 

using a subzoned-multizone model. That is, each physical zone was subdivided into 

subzones, similar to using a zonal model, but no mixed subzones with driving elements 

were modeled as is done in zonal modeling (Sec. 1.3.1.2). The study demonstrated the 

feasibility of using a subzoned-multizone airflow model and genetic algorithm (GA) for 

sensor system design. The effect of different sensor sensitivities on resulting sensor 

system designs was also studied. The second study [91] performed sensor system design 

on three test spaces (typical single office, large single hall, and a three-office suite). The 

study compared the performance of sensor systems designed using contaminant data from 

three forward airflow models: a subzoned-multizone, zonal, and CFD model. It was 

shown that unless a unique sensor system was needed, sensor systems designed using 

data from simpler airflow models performed just as well as those designed using more 

accurate CFD data for the single office and three-office suite, but not for the large hall. If 

there was one and only one sensor system that gave the minimum objective function 

value, that sensor system was given the description "unique". Only limited layouts were 

tested in these test spaces, and there was no internal furniture considered. 

From these preliminary studies, it could be seen that there were limitations to 

using the simpler airflow models for designing sensor systems that could perform as well 
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as those designed using more complex airflow models. Thus, this chapter examines those 

limitations in regards to different zone characteristics. 

2.2 Chapter 2 outline 

Sec. 2.3 presents the zone characteristics that were varied in order to observe 

which ones contributed to whether or not data from a simpler airflow model could be 

used to design sensor systems that performed just as well as those designed using more 

accurate CFD data. Sec. 2.4 presents the experimental design method used to generate the 

various test zones. Sec. 2.5 and 2.6 describe how each test zone was modeled in the 

multizone, zonal, and CFD models. Sec. 2.7 describes the contaminant releases simulated 

in each test zone. Sec. 2.8 describes how the contaminant data from an airflow model 

were used to design sensor systems. In lieu of experimental data, Sec. 2.9 describes how 

the performance of the designed sensor systems was validated/benchmarked. The results 

are discussed in Sec. 2.10, conclusions in Sec. 2.11, and future work in Sec. 2.13. 

2.3 Zones simulated 

The variation among zone and building shapes, sizes, interior layout, and uses is 

nearly endless. No two zones/buildings are identical. Currently, a new computer 

representation would need to be set up for every zone or building that is to be evaluated. 

Further, each of the three available airflow models requires a different setup. For indoor 

air sensor system design, one would like to use the simplest airflow model. This saves 

time without compromising design objectives. Currently, to determine the simplest 

airflow model, one would set up three representations for each of the three airflow 

models, and then simulate airflow patterns and contaminant transport. This methodology 

does not compromise design objectives, but it also does not save time. Therefore, it is 
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desirable to determine the simplest airflow model needed for systematic sensor system 

design for different classes of zones and buildings based on specific characteristics of the 

zone or building. 

This research is an initial step in classifying zones and buildings for the purpose 

of selecting the simplest forward airflow model for sensor system design. With future 

development, given any zone or building, one can use such classification to determine the 

simplest airflow model for the purposes of sensor system design without needing to 

simulate the zone or building in multiple airflow models. 

This research focused on commercial-use zones only. A suite of zones, like a 

small building, was tested in a preliminary study [91]. It was found that a sensor system 

designed using data from a simpler airflow model could perform just as well as one 

designed using more accurate CFD data only when the total number of sensors was not 

too small (reported to be two in [91]). The simpler airflow models were limited in their 

capabilities to provide data for designing sensors systems that could perform just as well 

as those designed using CFD data. Therefore, the effect of zone characteristics in 

buildings on systematic sensor system design was not tested in this research. 

Larger zones sizes were tested in [91-92]. It was found that a sensor system 

designed using data from a simpler airflow model could perform just as well as one 

designed using more accurate CFD data only when the total number of sensors was equal 

to the number of simulated contaminant releases. Thus, the simpler airflow models were 

limited in their capabilities to provide data for designing sensors systems that could 

perform just as well as those designed using CFD data. Therefore, the effect of zone 

characteristics on larger zones was not tested in this research, and the zone size was fixed. 
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The size of the zone that was tested in this research was selected based on 

architectural design guidelines. Thus, a 12 x 12 ft (3.7 x 3.7 m) zone was selected from 

[93] as the base value for the size. It was the size of a typical private office. The ratio of 

L/W for this zone size was 1:1. Architectural standards also report that heights of ceilings 

range from [8.0, 13] ft ([2.5, 4.0] m), depending on whether the ceiling is finished or not. 

For this research, the standard 8 ft (2.5 m) finished ceiling was chosen since finished 

ceilings are more likely to be found in commercial spaces. 

"Zones" were defined as a space: 

• That had a stand-alone HVAC system. In this research, the HVAC system 

supplied 100% outdoor air to the zone. Ducts in the multizone and zonal model 

were modeled using the Darcy-Colebrook model with average roughness of 0.15 

mm. Ducts were of unit length, 1.0 m. No modeling of ductwork was needed 

when using the CFD model. 

• Where the pressure inside and outside are not equal. Thus, infiltration was 

modeled. Openings on the exterior walls were modeled as small cracks. The same 

weather conditions were imposed on all sides of the zone. Thus, temperature 

differences due to solar radiation and pressure differences due to wind conditions 

were not modeled. During a year-long study of air change rates in an occupied 

house, it was found that wind speed and direction had very little influence on the 

air change rates [94], 

Zones differ in innumerable ways. Some of them include: size, diffusers (airflow 

rate, shape, size, and location), exhausts (shape, size, and location), furniture (types, sizes, 

and placement), ventilation system (type, amount of outdoor air), and airtightness (tight, 
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leaky). In this research, zones were classified by three characteristics: the diffuser, 

furniture, and level of airtightness. The literature has shown that these three 

characteristics can have a great impact on the indoor airflow and thus contaminant 

transport [95-96]. 

Given an airflow rate, the shape and size of a diffuser will affect the speed 

through which air is delivered to a zone. This in turn affects the flow condition (e.g., 

turbulence, mixing effects). The location of the diffuser and exhaust will also affect the 

circulation pattern. Lastly, furniture is present in almost all real indoor environments. 

They present obstructions to indoor airflow and can affect circulation patterns. The 

following sections discuss the range of "values" for diffuser (airflow rate, shape, size, and 

location), presence of furniture, furniture placement, and airtightness level used in this 

research. The letter assigned to each respective characteristic (i.e., input factor) was A, B, 

C, and D. 

2.3.1 Diffuser characteristics (location, A) 

The first zone characteristic evaluated was the diffuser. Diffusers can be specified 

by airflow rate, shape, size, and location. Most diffusers for commercial spaces are either 

round or square. Titus, a manufacturer of diffusers, recommends round diffusers for large 

spaces such as gymnasiums and atriums. Square diffusers are suitable for most other 

applications. Thus, for this research, square diffusers were selected as the selected zone 

size was not large enough to warrant the use of round diffusers. 

Diffusers have louvers that are angled in order to more effectively deliver air to 

the occupied space within a zone (Figure 2-1). A simple method to model the 

complicated geometry of a diffuser is to represent it as an opening with the same area as 
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the effective area of the actual diffuser. This approach can be taken in any of the three 

available forward airflow models. A more complex method, and one that is the subject of 

much research [97-99], is including the louvers in a CFD model. The "rectangular grille" 

diffuser macro in Airpak [100] was selected to model diffusers in this research. It is 

modeled by the momentum method [97, 100], Details on this method will be given below. 

The airflow rate and size of the diffuser were assigned values that remained 

constant through all test cases. These were fixed so that turbulence effects caused by the 

diffuser would be similar for all test cases. The airflow rate through a diffuser can be 

calculated by knowing the desired number of air changes per hour (ACH) in the zone. 

ACH is the number of volumes of air changed in an hour. For example, one ACH for a 

100 m3 zone would be equal to 100 m3/hr through the diffuser. For commercial spaces, a 

typical range of 4 to 10 ACH was reported [101]; thus an average value of 7 ACH was 

chosen. The effective size (or area) of a diffuser can be calculated by dividing the desired 

airflow rate (m3/hr) by the desired air speed (m/s). A guideline of 25-45 fpm is 

recommended for commercial spaces [101]; thus an average value of 35 fpm (640 m/h) 

was chosen. Given the ACH, zone volume, and desired air speed, a single square diffuser 

would be modeled with a volumetric flow rate of 150 cfm (0.7 m3/s) and an effective 

area of 4.0 ft2 (0.37 m2). 

In Airpak, additional parameters (throw, terminal velocity, effective area ratio or 

velocity decay constant) need to be specified in order to model a diffuser using the 

momentum method [100]. By this method, the airflow from a diffuser is modeled as: 

^ = (1) 
Uq x 
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Figure 2-1. Diagram of actual diffusers. 
Source: Titus 

where um is the terminal velocity a distance x (or throw) from the diffuser, UQ is the initial 

jet velocity, AQ is the effective area, and Kj is an empirically-determined velocity decay 

constant. The throw and terminal velocity of the diffuser were selected from 

manufacturer catalogs for the specified flow rate of 150 cfm (0.7 m3/s). The throw was 

specified as 10 ft (3.0 m) and the terminal velocity specified as 150 fpm (0.8 m/s). The 

effective diffuser area in Eq. (1) is a function of the effective area ratio, if specified, and 

the overall dimensions of the diffuser. The velocity decay constant would then be 

calculated by Airpak. If, on the other hand, a velocity decay constant is specified, then 

the effective area is calculated by Airpak. In this research, each diffuser was limited to 

one louver. Therefore, the effective area ratio was specified as 1.0. For a ceiling-mounted 

diffuser, air was delivered at an angle of 30° from the ceiling. For a wall-mounted 

diffuser, air was delivered 30° from horizontal. Additional louver set-ups were tested but 

resulted in numerically unstable CFD solutions. 

The location of a diffuser and exhaust affect the indoor airflow pattern. This 

subsequently affects contaminant removal efficiency. Diffusers and exhausts can be wall-
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Figure 2-2. Two diffuser/exhaust layouts for simulated zone. 
(not to scale) 

or ceiling-mounted. Both types are used in this research. Figure 2-2(a) shows the 

locations of a single ceiling-mounted diffuser and exhaust at opposite corners of the zone. 

Figure 2-2(b) shows the locations of a single ceiling-mounted diffuser and exhaust on 

opposite walls and opposite corners of the zone. Here, the diffuser is mounted near the 

ceiling while the exhaust is mounted near the floor. These layouts were chosen since they 

are two common design practices for locating diffusers/exhausts for a room of this size. 

Because the ceiling-mounted diffuser was placed in the corner, it was modeled as a 2-

way diffuser in CFD. The wall-mounted diffuser was modeled as two separate 1-way 

diffusers in CFD. See Figure 2-4 for a graphic of the CFD models. 

2.3.2 Furniture (B and Q 

The second zone characteristic, B, was whether the zone was empty or contained 

a piece of furniture. It was assumed that a single piece of furniture was placed in the zone, 

when applicable. The furniture was represented as a 2-D surface, resembling a table top 

with no legs. The third zone characteristic, C, was whether the piece of furniture was 

located under the exhaust or under the diffuser, when applicable. 
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Two techniques have been found in the literature to model furniture: solid and 

resistance. Using the solid technique, furniture is modeled as distinct objects, such as 

table surfaces, chairs, etc. and have impermeable surfaces. This means that no air is 

allowed to pass through the surfaces, which is a realistic assumption. Using the resistance 

technique, furniture is modeled as a single group of objects and has permeable surfaces. 

This means that a specified amount of air is allowed to pass through the surfaces. The 

resistance technique is most often used to model, for example, auditoria seating, when 

modeling each individual seat is impractical. A study that used the resistance technique to 

model furniture was [102], In this study, furniture was limited to a single piece and so the 

solid modeling technique was utilized. 

Modeling furniture in CFD requires the addition of solid no-slip surfaces to the 

model. Modeling furniture in the subzoned-multizone and zonal models requires that no 

flow path be specified between subzone interfaces where the piece of furniture is placed. 

Figure 2-3 shows a zone divided into four subzones. Figure 2-3 shows the top surface of 

a subzone "black-out" because it is to be modeled as a 2-D furniture surface. 

Figure 2-3. Example of how furniture was modeled in multizone and zonal models. 

Subzone 
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2.3.3 Airtightness (D) 

Building airtightness can affect the transport of contaminants, IAQ, and operation 

effectiveness and efficiency of the ventilation system. Thus, it is important to evaluate the 

effect of different levels of airtightness on sensor system design. Table 2-1 lists some 

values of air leakage for one-story homes in the U.S. Since the zone simulated was also 

one-story and relatively small, it was assumed that this data would be appropriate for this 

research. Each of the airtightness values should be multiplied by the envelope area in 

order to determine the volumetric flow rate of the total leakage from the zone at the 

specified pressure difference. 

The air leakage values in Table 2-1 can be converted from m3/h-m2 to effective 

leakage area (ELA) at 0.016 in H2O (4 Pa), in cm2/m2 of wall area, by multiplying by 

0.16. ELA was a concept developed by the Lawrence Berkeley National Laboratory. It is 

essentially the total area of orifices (with discharge coefficient of 1) that would result in 

the same leakage airflow rate as that measured at the reference pressure difference. ELA 

is often calculated at 0.016 in H2O (4 Pa), especially in houses, since this is the order of 

magnitude of typical indoor-outdoor pressure differences. The ELA at 0.016 in H 2 0 (4 Pa) 

for a "leaky" condition would be equal to 5.6 cm2/m2 (0.08 in2/ft2) (Table 2-1). 

To model infiltration in the multizone and zonal models, the air leakage values in 

Table 2-1 were converted to a mass flow coefficient (kg/s @ 1 Pa/m2). First, the air 

leakage values given at 50 Pa were converted to values at 1 Pa using the power-law 

equation: 

F = K{bP)" (2) 
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where F is the air leakage value (m3/h-m2 ) from Table 2-1, K is the constant to be 

determined, n is the flow exponent (dimensionless), and AP the reference pressure for 

which F was determined. In this case, AP was 50 Pa. Therefore, for the leaky condition, 

K was 2.115 using a typical value for n= 0.65 [5]. Thus, at 1 Pa, F=2.115(l Pa)0 65=2.115 

m3/h-m2 . Multiplying by the density of air (1.204 kg/m3) and converting from hours to 

seconds, this resulted in a mass flow coefficient of 0.0007 kg/s @ 1 Pa/m2. The airflow 

model then calculated the leakage rate through a crack using this mass flow coefficient 

and the area of the wall using the power-law equation given above. 

To model infiltration in CFD, the ELA at 0.016 in H2O (4 Pa) was first converted 

to ELA at 0.004 in H2O (1 Pa), in order to be consistent with the air leakage value 

specified in the multizone and zonal models. It was calculated to be 5.04 cm 2/m2 (0.072 

in2/ft2), which is very similar to the ELA at 0.016 in H 2 0 (4 Pa). 

Figure 2-4 shows that on each wall, three air leakage paths were modeled in CFD. 

The literature on modeling air leakage in CFD is limited, if not non-existent. Therefore, 

the choice of three air leakage paths was selected from studies of air leakage in 

manufactured homes using a multizone airflow model [104], Given that the ELA at 0.016 

in H 2 0 (4 Pa) was calculated to be 5.04 cm2/m2 (0.072 in2/ft2), and that the area of a wall 

Table 2-1. Air leakage values for one-story U.S. houses. 

Air leakage @ 75 Pa (0.03 in H 2 0) 
[m3/hm2] 

Equivalent air changes per hour 
@ 50 Pa (0.02 in HzO) 

[h"1] 
Tight 3.5 2 

Moderately tight 8.8 5 
Typical 17.5 10 
Leaky 35.0 20 

Source: [103], 
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was 144 ft2 (13.7 m ), each of the three air leakage paths was modeled as an opening of 

1.08X 0.016 ft (0.33 x 0.005 m) in CFD. Other configurations of air leakage paths were 

also considered. Figure 2-5 (a) shows the air leakage paths modeled as window sashes. 

Figure 2-5(b) shows the air leakage paths modeled as extending the width of a wall. 

These configurations were not used, however, because the grid size around such air 

leakage paths in CFD would be much less than 0.016 ft (0.0005 m) in order to maintain 

the same ELA. This would have resulted in mesh sizes, and thus solution spaces, that 

exceeded the computing power of the desktop used in this research. In the multizone and 

zonal models, three leakage paths were also modeled. However, only the area of the wall 

needed to be specified. Therefore, for three leakage paths, each wall was divided into 

three portions. 

Table 2-2 is a summary of the input factors that were used to simulate and classify 

different zones in this research, along with their various "values". The "-" and "+" will be 

explained in the following section. If the value of an input factor was held constant, it 

traversed both "-" and "+" columns. The value of these constant input factor values could 

be varied in future work. 
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Figure 2-4. CFD models of air leakage paths in simulated zones with two 
diffuser/exhaust layouts. 

(a) (b) 

Figure 2-5. Alternative CFD models of air leakage paths (not used in this research). 
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Table 2-2. Summary of zones characteristics varied in this research. 
Input factor Zone Parameter "-" values "+" values 
designation characteristic assigned assigned 

A Diffuser Location Ceiling Wall 
Shape Square 

Airflow rate 150 cfm (0.7 mJ/s) 
Size 4.0 ft2 (0.37 m2) 

B Furniture Present/Not present Not present Present 
C Location Under exhaust Under diffuser 

Modeling technique Solid 
D Airtightness No leakage Leaky 

2.4 Computer experiments 

Methods for designing physical experiments were applied to this research in order 

to systematically test the effect of each input on the output, or response. The inputs here 

were the zone characteristics. The response was the resulting sensor systems designed 

using contaminant transport data from an airflow model. A qualitative response was used 

in this research: whether or not the sensor system designed using data from a simpler 

airflow model could perform just as well as one designed using data from a more 

complex airflow model. 

Two levels ("-" and "+") for each input factor were described in Sec. 2.3 and 

summarized/assigned in Table 2-2. The number of experiments ran was nk, where n is the 

number of levels and k is the number of inputs. Since there are four input factors 

(J=diffuser location, Z?=presence of furniture, C=location of furniture, and D=airtightness) 

and two levels each, the number of experiments to run would have been 24 or 16. But, 

when there was no furniture present (input factor B), the location of the furniture (input 

factor Q could not be varied (in Table 2-3, these simulations are darkened). Thus, the 

number of experiments ran was 24 - 4 = 12. This design had three replications because 
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Table 2-3. Summary of test cases and responses using multizone model 
Input factors 

Test case Diffuser/ 
Exhaust 
Location 

Furniture 
Presence 

Furniture 
Location 

Airtightness Response 

(-4) (6) (C) (D) 
1M 
2M 

5M 
6M 
7M 
8M 
9M 
10M 

+ 
+ 

+ 
+ 
+ 
+ + 

+ 

yi,M 
Y2.M 

Ys.M 
Y6.M 
y?,M 
y8,M 
Y9.M 

yio.M 
2Mf i jfe- s s. e- iffeŝ . 
13M + + - - yi3lM 
14M + + - + yH.M 
15M + + + - yis.M 
16M + + + + yie.M 

Note:"-" indicates low level;"+" indicates high level; subscript "M" indicates multizone model. A 
subscript "Z" would indicate zonal model, and subscript "CFD", the CFD model. Tables for zonal 
and CFD models are identical to this one except for the subscripts. They are not shown for brevity. 

there three airflow models were tested, giving a total of 12-3 = 36 zone simulations. This 

number did not account for the number of contaminant releases (i.e., locations). In the 

text, each test case will be referred to by its input factor and level. For instance, test case 

1M is for Zone A[-], B[-\, C[-], and £>[-]. 

The multizone model used was COMIS [6], the zonal model COwZ [20], and the 

CFD model FLUENT Airpak [100]. All simulations were performed on a Dell 

Dimension desktop with Intel Duo-Core Processor and 3GB RAM. The turbulence 

models available in Airpak were the standard K-S, RNG K-S, and indoor zero-equation 

models (Sec. 1.3.1.3). Both the RNG K-S and indoor zero-equation turbulence models 

have been recommended for indoor airflow in the literature. For this research, the 
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standard K-S and the indoor zero-equation turbulence models were tested. The RNG K-S 

model was not tested since convergence difficulties have been met when using it [26]. 

A subzonal modeling approach was taken when utilizing the multizone and zonal 

models. However, in the text, they have simply been referred to as multizone and zonal 

model. As discussed in Sec. 1.3.1.2, mixed subzones contain a well-mixed (or standard) 

portion and a driving element. In this research, the driving element was a velocity jet. 

Flow between the portions with a driving element is governed by designated mass flow 

relationships. For a vertical jet, the equation that described velocity distribution along the 

axis of the jet was [21]: 

where the index m refers to the axis of the jet and the index o to the initial position of the 

jet (at the ceiling where z = 0 m). The area of the inlet is A0 (m2). The constant Ka 

represents the apparent length of the constant velocity zone measured from the inlet [105] 

The initial temperature difference, ATa, is the difference between the inlet and room 

temperature (°C). In this research, isothermal flow was assumed, therefore, AT0 was zero. 

The velocity along the jet axis is wm, and the initial jet velocity is wa. Finally, z is the 

distance from the inlet measured along the jet axis (m). The plus sign inside the brackets 

is used when the momentum of the jet is in the same direction as gravity, as it was in this 

research. Conversely, when the forces are in opposite directions, the minus sign is used. 

The increase in jet radius, r, was assumed to be approximately linear and was: 

2.5 Model setup: multizone and zonal models 

1/3 

(3) 
v J 
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w 
w, 

= exp -k 
r \2 r 

(4) 

where A: is a dimensionless coefficient determined experimentally to be 77 for three 

dimensional jets [21]. Thus, the volumetric flow rate, q{z), was: 

q{z) = jlnrw dr (5) 

Substituting the expression for w in (4) into this equation and remembering that 

qo = A0w0, the volumetric flow rate was: 

q{z) =
 z

m { z ) = " Ka z 
q0 zmo k JA^ 

Thus, the relationship between r and z was: 

1±0.09 
( ^2 

Kw„ 

1/3 

(6) 

kA (7) 

Since volumetric flow rate was related to mass flow rate, (6) is also the ratio of 

the mass flow rate at any distance z from the inlet (zm(z)) to the initial mass flow rate (zm0J. 

Thus, given the distance from the inlet to the bottom of the jet, one can determine the 

width of the subzone required to capture the entire inlet jet. In selecting the sizes of the 

standard subzones, guidelines found in [20] were followed. For the tested zone size of 12 

x 12 x 8 ft high (3.7x 3.7x 2.5 m), a 5 x 5 X 5 subzone layout was used (Figure 2-6). 
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(a) (b) 

Figure 2-6. Subdivision of Zones (ai)A[-\ and (b) [+] (not to scale). 

Testing the sensitivity of the airflow results to changes in subzone size was not 

performed when using the multizone and zonal models because it has been shown that 

increasing the number of subzones did not improve the accuracy of resulting velocity 

[13]. Sensitivity tests where time step was varied, however, were performed. The time 

steps tested were 1, 5, 15, 30, and 60 seconds. No change was found for the airflow and 

contaminant transport results using different time steps in the multizone and zonal models. 

Both grid size and time step analyses were performed for the CFD models. 

2.6 Model setup: CFD model 

The grid size used to model typical indoor spaces found in the literature varied 

widely. Therefore, an optimal grid size and time step must be determined on a case by 

case basis. As mentioned in Sec. 2.4, the standard K-E and the indoor zero-equation 

turbulence models were tested. However, due to convergence issues with the indoor zero-

equation turbulence model when modeling the diffusers, this research was performed 

using the standard K-S turbulence model. 
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2.6.1 Zone^4[-] 

For the test cases with the ceiling-mounted diffuser and exhaust (A[-]), grid and 

time step independence analyses were performed using several meshes and time steps. 

The meshes used were: 1 0 x 1 0 x 1 0 cm uniform, 8x 8x 8 cm uniform, 6x 6x 6 cm 

uniform, and each uniform mesh with three refinements. The "refined meshes" included 

different levels of clustering around the diffuser and exhaust. For each refinement, the 

initial grid perpendicular to the surface(s) of the inlet, outlet, and contaminants was 3.0 

cm. For the R1 meshes, the grid sizes continued to increase toward the center of the test 

zone at a ratio of 1.5. For the R2 meshes, the ratio decreased to 1.25, and for the R3 

meshes, the ratio decreased to 1.03. The number of nodes in the meshes considered 

varied from 50,000 to 200,000. The time steps used were 0.25, 0.1, 0.05, and 0.01 

seconds. 

Resulting velocity profiles from the various meshes were compared for several 

locations around the room. It was found that velocity profiles across the middle of this 

zone along the x-direction were more affected by the change in grid size than other 

selected locations, even near the diffuser. Thus, only velocity profiles across the middle 

the zone were used in the selection of an optimal mesh. Figure 2-7 shows that the 10cm 

and 8cm uniform meshes produced airflow results more similar to each other than did the 

6cm uniform mesh (steady-state, or SS, results). The difference in velocity, uy, at the 

peak was 5% when the results were compared between the 10cm and 8cm uniform mesh. 

The reduction in grid size down to 6cm began capturing airflow effects near the walls, 

which consequently affected flow everywhere else. Since experimental data was not 
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Figure 2-7. Velocity profile across middle of Zone^4[-] (uniform meshes). 

available to validate these CFD results, it was not possible to conclude which mesh was 

the "right" one or which one "should be" utilized. Thus, the 8cm uniform mesh was 

selected for grid refinement around the diffuser and exhaust since it would allow for 

savings in computational time since multiple CFD simulations needed to be performed 

for this research. 

Velocity profiles resulting from the use of the refined 8cm meshes (steady-state) 

were compared. It was found that with greater refinement, the resulting velocity profiles 

converged. The differences between the velocity profiles resulting from the use of the 

first (Rl) and second refinement (R2) of the 8cm uniform mesh was 5%. The difference 

was even smaller (1%) when velocity profiles using the 8R2 and 8R3 meshes were 

compared. Thus, it was concluded that the 8R2 mesh would be used for the 

simulation of Zone A[-]. 

The 8R2 mesh was subsequently used to determine the optimal time step for CFD 

simulations. The steady-state airflow results from the use of the 8R2 mesh were selected 

as the starting conditions for the transient simulations in order to conserve computational 
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time. Velocity profiles under the diffuser and in the center of the zone were compared in 

order to determine the optimal time step. The differences between the velocity profiles 

resulting from the use of At = 0.25 and At = 0.10 sec was approximately 10%. The 

differences between the velocity profiles resulting from the use of At = 0.10 and At = 

0.05 sec was <5%. Therefore, it was concluded that At = 0.10 sec was the optimal 

time step for Zone^4[-]. 

2.6.2 Zone^4[+] 

For the test cases with the wall-mounted diffuser and exhaust 04[+]), grid and 

time step independence analyses were performed using the same meshes and time steps 

for Zon &A[-] (previous section). The number of nodes in the meshes considered for Zone 

A[+] varied from 99,000 to 250,000. Similar comparisons to the ones made in the 

previous section for Zone A[-] were made here in order to select the optimal mesh and 

time step for Zone Figure 2-8 shows that using the 8cm and 6cm uniform meshes 

resulted in airflow more similar to one another than using the 10cm uniform mesh (SS 

results). The difference in velocity, uy, at the peak was small (3e-3 m/s) when the results 

were compared between the 8cm and 6cm uniform mesh. Thus, the 8cm uniform mesh 

was selected for grid refinement around the diffuser and exhaust. It was concluded that 

the 8R2 mesh would be used for the simulation of the Zonev4[+]. 

The 8R2 mesh was used to determine the optimal time step for CFD simulations. 

The steady-state airflow results from the use of the 8R2 mesh were selected as the "initial 

guesses" for the transient simulations in order to conserve computational time. Velocity 

profiles under the diffuser and in the center of the zone were compared in order to 
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Figure 2-8. Velocity profile across middle of Zone^l[+] (uniform meshes). 

determine the optimal time step. The differences between the velocity profiles resulting 

from the use of At = 0.25 and At = 0.10 sec was < 5%. The differences between the 

velocity profiles resulting from the use of At = 0.10 and At - 0.05 sec was even less, 

about 2%. Therefore, it was concluded that At = 0.25 sec was the optimal time step 

for this Zone^4[+]. 

2.7 Contaminant releases 

The release of a CBW agent was modeled as a constant source (5 mg/s) that was 

present from t= 0 to t=\.0 min. The same four release locations were considered for each 

test case (Figure 2-9). Release location 1 was under the supply diffuser. Release location 

2 was near the center of the test zone. Release location 3 was chosen near an occupant. 

Release location 4 was near the exhaust. 

Subzone location names are given by their respective x, z, and y cell index. For 

instance, in Figure 2-9, the first release location was in subzone 111. The second release 

location was in subzone 321, and so on. In CFD, the contaminants are modeled as 

volumetric sources of size 0.25 x 0.25 x 0.25m. 
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Release 1 

® 3 
© 

& -Occupant 1 

0 

Release no. Subzone loc. 
1 111 
2 321 
3 151 
4 441 

Occupant no. Subzone loc. 
1 511 
2 241 

i Contaminant release 

J Occupant exposure 

Figure 2-9. Locations of contaminant releases (underlined) and 
occupant exposures (italics). 

Subdivisions shown (not to scale). See text for subzone naming convention. 

All contaminants were released on the floor. The release locations were designed 

for effective transport or ease of accessibility. They were also designed to test the simpler 

models based on differences in the airflow calculated by the three models. Large 

differences in airflow could lead to large differences in contaminant transport. Thus, by 

specifying contaminant releases in the subzones where the largest differences between 

the calculated airflow of the simpler airflow model and CFD model existed, it can be 

shown whether or not even the largest differences between the airflow models affected 

sensor system design. Tests Cases 1 and 9 (no furniture, no infiltration) (Table 2-3) were 

used to design the contaminant release locations. 

2.8 Designing indoor air sensor systems 

Upon completion of each simulation, a sensor system was designed according to 

the procedure in Figure 2-10. Selecting an optimization method, selecting design 

objectives, identifying constraints, and validating the sensor system design were some of 

the key components. 
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* A "valid" sensor system design here means that its performance is validated, either with 
experimental data or other benchmark, and will meet design objectives when implemented under 
real conditions. 

Figure 2-10. Flow chart of sensor system design. 

Designing sensor systems for indoor air applications requires an optimization 

method that can solve non-linear problems and is computationally efficient. As discussed 

in Sec. 1.3.2, the stochastic class of optimization methods were very useful in solving 

nonlinear problems from different areas of physical science and engineering [46], 

Stochastic optimization methods were also considered in a study for indoor sensor 

placement [47]. Therefore, for this research, genetic algorithm (GA) was selected as the 

optimization tool for sensor system design. 
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2.8.1 Genetic algorithm (GA) 

This discussion is adapted from [90], The contaminant dispersion process is a 

complicated non-linear process, and sensor system selection is a discrete process. Hence 

GA, a stochastic search algorithm was selected as the optimization approach because of 

its ability to handle complicated non-linear problems, as well as discrete processes.. 

Figure 2-11 shows the basic process of a GA optimization. An initial guess was supplied 

for the design variables (i.e., sensor system designs), which served as the initial 

population. For each vector of n of initial guesses, the objective function (the ones used 

in this research to be discussed in the following section) was calculated and compared. 

The vectors that generated the best values of the objective function had the highest 

probability of becoming "parents" to the next generation. "Reproduction" of the parents 

was performed through "crossover" and "mutation" (Figure 2-11). Crossover was an 

exchange of the members (i.e., sensor locations of each sensor system design) of the 

parents. To prevent premature converging to a local optimal solution, a process called 

"mutation", which generates a new vector randomly, was involved in the process. Once a 

new population was generated, the values of the objective function were calculated and 

compared again. New parents were then selected and the process was repeated until 

certain optimization criteria were satisfied. 

GA was employed using the Genetic Algorithm and Direct Search Tool in Matlab 

[106] with the following options: 

Population size: 20 
Elite count (or number of parents): 2 
Crossover fraction: 0.8 
Mutation function: Gaussian 
Mutation scale: 1.0 
Generations: Infinity 
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Time limit: Infinity 
Fitness limit: -Infinity 
Stall generations: 200 
Stall time limit: Infinity 

2.8.2 Design objectives (objective functions) 

The objective functions for designing sensor systems for building protection 

purposes should be able to detect contaminants within an amount of time that poses the 

least threat to the building occupants across multiple release locations. The first objective 

function used was to minimize detection time, Jdet [90]: 

N 

= Z ^ X ' d e < - i (8) 

k=1 

where pk is the probability for the Mi release location to occur, ^et-k is the detection time 

for scenario k, and N is the number of release locations, /det-k for a particular release 

Figure 2-11. Genetic algorithm flow chart [90]. 
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location k given a multiple-sensor system is the minimum detection time of all of the 

sensors. For example, for a 2-sensor system, the detection time for each release location 

might be (1) for sensor one: 1.0, 2.0, 1.5, and 1.0; and (2) for sensor two: 2.0, 1.0, 1.0, 

and 2.0. Thus, the detection time for each release location, ?det-k, given this 2-sensor 

system would be 1.0, 1.0, 1.0, and 1.0. In this study, pk was UN fox all release locations. 

Therefore the objective function value, Jdet, was essentially the average detection time 

over all release locations, i.e., ^(l.O+l.0+1.0+1.0)=1.0 min in the above example. The 

detection time for each release location was the time when the measured contaminant 

concentration reached (or exceeded) the sensor threshold at a sensor location. The 

sensor threshold was a fixed value, 0.03 mg/m3 [107], for all sensor system designs. Thus, 

even if the three airflow models calculated different contaminant concentration at a 

sensor location at a specific time (say, 1.0 min), as long as the concentration at the sensor 

location was equal to or greater than the sensor threshold (0.03 mg/m3), the detection 

time would be equal to 1.0 min. for all three airflow models Each sensor in the sensor 

systems designed in this research had the same threshold. 

The second objective function used was to minimize occupant exposure, Jexp [90]. 

Total occupant exposure, Ek, for the Ath release location was defined as: 

where Exp(m, t) is the occupant exposure for the mth occupant at time t, and S is the 

number of occupants. For each occupant, the exposure is the total inhaled concentration 

up to the time when the sensor alarmed, i.e., when the contaminant concentration 

measured reached the sensor threshold at the sensor location. 

(9) 
m=1 1=0 
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^ 'da-i 
E k = Y X B - C ( m , t ) (10) 

m=1 (=0 

where B is the inhalation rate, which was assumed to be constant for all occupants and all 

times, and C(m,t) the local concentration at each occupant location. Thus, for all N 

release locations, the objective function based on total occupant exposure, Jexp, was 

defined as: 

J
a p =itpkxEk (11) 

A=1 

Occupant exposures were evaluated at two locations in the test zone (Figure 2-9) 

at opposite corners. All occupant exposures were evaluated at the breathing level. 

The sensor locations for which the contaminant concentration did not reach the 

sensor threshold within the simulation time period were penalized with a value of 1,000 

for both detection time and occupant exposure. A penalty of 1,000 was used since it was 

at least an order of magnitude greater than the time for which concentration data was 

available. If the penalty value were set to be a value other than 1,000, some reported 

objective function values would change (those with a value larger than 100). However, as 

long as the penalty value was greater than the time for which concentration data was 

available, the results of this research would not change. 

The constraints on a sensor system can include cost, quantity and location of 

sensors, and the types of sensors used. These constraints are interrelated and can affect 

the performance of a sensor system. Because the relationships between these constraints 

are complex, detailed evaluation of their interaction will be saved for future work. For 

this research, it was assumed that the cost of each sensor was the same, no matter its 
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location. Therefore, the constraint on the sensor system designs was the quantity of 

sensors. 

2.9 Validation of sensor systems 

Optimal sensor systems cannot be determined analytically, which is why 

optimization methods are employed for sensor system design. One way to validate a 

sensor system is to perform experiments. However, given the number of simulations in 

this research, a time-saving and often used method for validating airflow model data is to 

use CFD data. This assumes that CFD data is accurate. Initial studies have been done in 

order to verify Airpak, the CFD code used for this research. Published experimental 

studies that report velocity and/or contaminant data were used for verification purposes. 

CFD data thus took the place of actual experimental data. 

Once a sensor system is designed, data from CFD models are used as synthetic 

experimental data to evaluate the detection times and occupant exposures (more generally 

referred to as "objective function values") associated with each sensor system. These 

objective function values were given different descriptive names in this research. The 

terminologies used were: multizone-optimal, zonal-optimal, CFD-optimal, and CFD-

benchmarked objective function values. They differed in the airflow model data used to 

design the sensor system and the airflow model data used to calculate the objective 

function values. Figure 2-12 illustrates the connection between the terminology and the 

airflow models. 
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Airflow model data Terminology given 
Airflow model used used to calculate to objective 

to design sensor objective function function value 

CFD j W CFD i CFD-optimal 

Figure 2-12. Connection between terminologies in research and airflow models. 
Source [91]. 

When CFD data served as synthetic experimental data, volume-averaged CFD 

concentration data was calculated based on the subzone sizes used for the multizone and 

zonal models. The volume-averaged CFD concentration data was then used to calculate 

the detection time and occupant exposure for each sensor system designed using the 

multizone and zonal models (termed the "CFD-benchmarked" detection times and 

occupant exposures). Comparing CFD-benchmarked detection time and occupant 

exposure to CFD-optimal ones showed whether or not data from simpler airflow models 

could be used to design sensor systems capable of performing just as well as those 

designed using more accurate CFD data. Thus, the CFD-benchmarked values represented 

the potential performance of the simpler airflow models, whereas the multizone- and 

zonal-optimal values respectively represented the current capabilities of the multizone 

and zonal models. 
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2.10 Results and discussion 

There were four contaminant release locations simulated in this research. Thus, up 

to 4-sensor systems for each design objective were reported for each test case. Table 2-4 

to Table 2-14 summarize the sensor systems designed using the multizone and zonal 

model data for test cases that will be discussed in this main text. Similar tables for test 

cases not specifically discussed in this main text can be found in APPENDIX B. The 

results from some test cases were not specifically discussed in this main text because they 

shared similarities with those that were discussed. 

The "Obj. tunc." (objective function) column in these tables referred to the design 

objective, either "D" for minimizing detection time or "E" for minimizing occupant 

exposure. For the sensor systems designed with the "D" objective, the units of the 

objective function value were in minutes. For the sensor systems designed with the "E" 

objective, the units of the objective function value were in kg of contaminant/kg of air (or 

kg/kg). The concepts of multizone-optimal, zonal-optimal, CFD-optimal, and CFD-

benchmarked objective function values were introduced in Sec. 2.9 and Figure 2-12. A 

"complementary" objective function value was defined (denoted in parenthesis). They 

referred to the occupant exposure when "D" was the objective function used to design the 

sensor system, or detection time when "E" was the objective function value used to 

design the sensor system. The column "Locations using CFD data" were the sensor 

locations designed using CFD data alone. The last column indicated whether or not the 

CFD-benchmarked objective function value for each sensor system was equivalent to the 

CFD-optimal value for the same number of sensors. A "Y" indicated that the two values 

were equivalent, and thus the sensor system designed using data from the simpler airflow 
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model could perform just as well as one designed using more accurate CFD data. A "Y" 

also indicated that the sensor locations designed using either multizone or zonal model 

data were the same as those designed using CFD data. 

If there was one and only one sensor system that gave the minimum objective 

function value, that sensor system was given the description "unique". It was marked 

with a "*". If there were multiple sensor systems that gave the same minimum objective 

function value, only one of the possible sensor systems was listed. The one listed was 

chosen based on similarity to the sensor systems designed using data from the other 

airflow models, thus allowing for a clearer comparison. In general, some 1-sensor 

systems were found to be unique, while multiple-sensor systems were found to be non-

unique. Finally, "Eng" indicated a common engineering design practice. In this research, 

the 1-sensor system commonly employed in engineering design is to place a sensor at the 

exhaust. The location was subzone 555 for the test cases with the ceiling-mounted 

diffuser and exhaust (Zonev4[-]). The location was subzone 551 for the test cases with the 

wall-mounted diffuser and exhaust (Zone 

2.10.1 Zone^[-] 

Test Cases 1 - 8 are associated with the zone with the ceiling-mounted diffuser 

and exhaust. Keep in mind that Test Cases 3 and 4 were not simulated since there was no 

furniture and thus, its location could not be varied (see Sec. 2.4 and Table 2-3). Sec. 0 

and 2.10.1.1 discuss the results for Test Cases 1 (no furniture, no infiltration) and 7 

(furniture under diffuser, no infiltration), respectively. Details for the results of Test 

Cases 2 (no furniture, with infiltration), 5 (furniture under exhaust, no infiltration), 6 

(furniture under exhaust, with infiltration), and 8 (furniture under diffuser, with 
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infiltration) were not presented since they shared similarities with either Test Case 1 or 7. 

In general, for Test Cases 1 - 8 , sensor systems designed using data from the multizone 

and zonal models (i.e., simpler airflow models) were able to perform just as well as 

those designed using more accurate CFD data, except for the 1-sensor systems. In 

other words, the CFD-benchmarked detection time and occupant exposure were equal to 

the CFD-optimal ones. Keep in mind that any differences in the values of the 

contaminant concentration calculated by each airflow model did not affect the calculated 

detection time as long as the contaminant concentration reached (or exceeded) the sensor 

threshold. 

Neither the absence nor presence of furniture or infiltration affected the ability of 

the simpler airflow models to provide the data for designing sensor systems capable of 

performing just as well as those designed using more accurate CFD data for sensor 

quantities greater than one. Lastly, the common engineering design practice of placing a 

sensor at the exhaust resulted in non-optimal performance when benchmarked with CFD 

data. Placing a sensor at the exhaust was no more, and no less, a robust design than 

placing a sensor at the location designed using multizone and zonal model data. Test 

Case 1 (no furniture, no infiltration) 

Table 2-4 shows that the 2-, 3-, and 4-sensor systems designed using data from 

the multizone model was able to perform just as well as those designed using more 

accurate CFD data for Test Case 1. The 1-sensor system designed using multizone model 

data for Test Case 1 was subzone location 452 when minimizing detection time. It was 

the only location where the 1-sensor system was multizone-optimal and was thus marked 
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with an "*" in the table. Its CFD-benchmarked detection time was calculated as 1.5 min, 

which was greater than the CFD-optimal detection time of 1.0 min for a 1-sensor system. 

Table 2-5 shows that the 2-, 3-, and 4-sensor systems designed using data from 

the zonal model was able to perform just as well as those designed using more accurate 

CFD data for Test Case 1. The 1-sensor system designed using zonal model data for Test 

Case 1 was either subzone location 451 or 452 when minimizing detection time. These 

locations were vertically adjacent subzones. These locations are marked with an "*" 

because these were the only two locations where a 1-sensor system was zonal-optimal. 

Their CFD-benchmarked detection times were calculated as 1.5 and 1.25 min, 

respectively, which were greater than the CFD-optimal detection time of 1.0 min for a 1-

sensor system. 

The common engineering design practice of placing a sensor at the exhaust 

resulted in non-optimal performance (CFD-benchmarked detection time of 1.5 min). The 

detection times for the sensor placed at the exhaust were 2.0, 2.0, 1.0, and 1.0 min, 

respectively for each release location. The multizone- and zonal-optimal 1-sensor 

systems (locations 451 or 452) also exhibited these detection times. Thus, placing a 

sensor at the exhaust was no more, and no less, a robust design than placing a sensor at 

the location designed using multizone and zonal model data. 
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Table 2-4. Sensor system designs for Test Case 1 using multizone model data 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 151,251, 
441,524 

1.0 
(5.9e-8) 1.0 1.0 Y 

2 4 E 222,321, 
433,555 

5.9e-8 
(1.25) 9.4e-4 9.4e-4 Y 

3 3 D 151,423, 
554 

1.0 
(5.9e-8) 1.0 1.0 Y 

4 3 E 131,141, 
455 

5.9e-8 
(1.5) 

9.4e-4 9.4e-4 Y 

5 2 D 231,552 1.0 
(5.9e-8) 1.0 1.0 Y 

6 2 E 121,553 5.9e-8 
(1.5) 9.4e-4 9.4e-4 Y 

7 1 D 452* 1.25 
(1 .Oe-6) 1.5 1.0 252 N 

8 1 E 331 5.9e-8 
(500.5) 9.5e-4 9.4e-4 252 N 

Eng 1 D 
(E) 555 2.25 

(1.2e-5) 
1.5 

(1.1 e-3) 
1.0 

(9.4e-4) 355 N 

* unique sensor system 

Table 2-5. Sensor system designs for Test Case 1 using zona model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
F4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
F4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 134,215, 
453,533 

1.0 
(2.7e-6) 1.0 1.0 Y 

2 4 E 134,351, 
454,523 

2.7e-6 
(1.0) 

9.4e-4 9.4e-4 Y 

3 3 D 314,442, 
553 

1.0 
(2.7e-6) 1.0 1.0 Y 

4 3 E 235,434, 
554 

2.7e-6 
(1.25) 9.4e-4 9.4e-4 Y 

5 2 D 142,454 1.0 
(2.7e-6) 1.0 1.0 Y 

6 2 E 322,554 2.7e-6 
(125) 9.4e-4 9.4e-4 Y 

7 1 D 451 or 
452* 

1.0 
(2.7e-6) 1.5 or 1.25 1.0 252 N 

8 1 E 451 or 
452 

2.7e-6 
(1.0) 

1.10e-3 or 
9.48e-4 9.4e-4 252 N 

Eng 1 D 
(E) 555 1.5 

(1.1 e-5) 
1.5 

(1.1 e-3) 
1.0 

(9.4e-4) 355 N 

* almost unique sensor system 
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For Test Case 1, a sensor system designed to minimize detection time did also 

guarantee that occupant exposure was minimized, whether using multizone or zonal 

model data to design the sensor system. However, a sensor system designed to minimize 

occupant exposure did not also guarantee that detection time was minimized, whether 

using multizone or zonal model data to design the sensor system. For instance, the 4-

sensor system designed to minimize detection time (Sensor sys. #1 in Table 2-4) had a 

detection time of 1.0 min and an occupant exposure of 5.0e-8 kg/kg. Following the 

discussion in Sec. 2.8.2, the detection time was calculated as lA(l.0+1.0+1.0+1.0)=1.0 

min. The occupant exposure was calculated as '/4(2.4e-7+0+0+0) = 5.9e-8 kg/kg. Similar 

calculations were performed for Sensor sys. #2 in Table 2-4) (designed to minimize 

occupant exposure). Detection time was calculated as ',4(1.0+1.0+2.0+1.0)=1.25 min, and 

occupant exposure was calculated as %(2.4e-7+0+0+0)=5.9e-8 kg/kg (same value as for 

Sensor sys. #1). The detection time for release #3 was 1.0 min for Sensor sys. #1 and 2.0 

min for Sensor sys. #2. Nevertheless, the occupant exposure for release #3 was always 

0 kg/kg. 

Figure 2-13 shows the contaminant contour plots for Test Case 1, Release #3 for 

all three airflow models at two times. When the contaminant was released from location 

#3, the contours plots of Test Case 1 modeled with the simpler airflow models showed 

that neither occupant was exposed to the contaminant (Figure 2-13a to d). Note that even 

though the contour lines may fall within the subzone of an occupant, the concentration 

there was always zero. On the other hand, the contour plots of the contaminant data 

simulated by the CFD model showed that at least one of the occupants was exposed to the 
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Figure 2-13. Contaminant contour plots for Test Case 1, Release #3. 

contaminant within the first minute. Figures similar to Figure 2-13 can be found in the 

APPENDIX B for all the test cases and all of the contaminant releases. Since different 

detection times resulted in the same occupant exposure, minimizing occupant exposure 

could not also guarantee that detection time was also minimized. This was also observed 
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for the sensor systems designed using zonal model data (compare Sensor sys. #3 and 4 in 

Table 2-5). 

In fact, for releases #2 to #4, the simpler airflow models calculated zero occupant 

exposure for all test cases simulated by the simpler airflow models for Zone A[-]. 

Therefore, for all test cases simulated by the simpler airflow models for Zone^4[-], 

minimizing occupant exposure did not guarantee that detection time was also 

minimized. 

The optimal 1-sensor location designed to minimize detection time using 

multizone model data for Test Cases 2, 5, and 6 were the same (subzone location 451). 

This location was vertically adjacent to the optimal 1-sensor location designed to 

minimize detection time using multizone model data for Test Case 1 (subzone location 

452). The optimal 1-sensor locations designed to minimize detection time using zonal 

model data for Test Cases 2, 5, and 6 were the same {either subzone location 451 or 452). 

These locations were the same as the optimal 1-sensor locations designed to minimize 

detection time using zonal model data for Test Case 1. For Test Cases 2, 5, and 6, the 1-

sensor systems designed using the simpler airflow models did not perform as well as 

those designed using more accurate CFD data. Therefore, for all test cases simulated 

by the simpler airflow models for Zone^4[-], the 1-sensor systems designed using 

data from the simpler airflow models did not perform as well as those designed 

using more accurate CFD data. 

The closest CFD-optimal subzone location for a 1 -sensor system would have been 

subzone location 252 for Test Cases 1-6. This location was approximately 1.3 m away 

from the locations designed using data from the simpler airflow models. The 1-sensor 
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systems designed using data from three airflow models for the test cases for zone A[-\ are 

summarized in Table 2-8 and shown graphically in Figure 2-15. 

2.10.1.1 Test Case 7 (furniture under diffuser, no infiltration) 

Table 2-6 shows that the 2-, 3-, and 4-sensor systems designed using data from 

the multizone model was able to perform just as well as those designed using more 

accurate CFD data for Test Case 7. The 1-sensor system designed using multizone model 

data for Test Case 7 was either subzone location 451, 452, 453, 551, or 552 when 

minimizing detection time. The first three and last two locations were vertically adjacent 

subzones. These locations were marked with an "*" because these were the only five 

locations where a 1-sensor system was multizone-optimal. Their CFD-benchmarked 

detections time ranged from 1.25 to 1.5 min, which were greater than the CFD-optimal 

detection time of 1.0 min for a 1-sensor system. 

Table 2-7 shows that the 2-, 3-, and 4-sensor systems designed using data from 

the zonal model was able to perform just as well as those designed using more accurate 

CFD data for Test Case 7. The 1-sensor system designed using zonal model data for Test 

Case 7 was either subzone location 451, 452, or 453 when minimizing detection time. 

These locations were vertically adjacent. These locations were marked with an "*" 

because these were the only three locations where a 1-sensor system was zonal-optimal. 

Their CFD-benchmarked detections time ranged from 1.25 to 1.5 min, which were 

greater than the CFD-optimal detection time of 1.0 min for a 1-sensor system. 

The common engineering design practice of placing a sensor at the exhaust 

resulted in non-optimal performance (CFD-benchmarked detection time of 1.25-1.5 min). 
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Table 2-6. Sensor system designs for Test Case 7 using multizone model data. 

Sensor Qty 
Obj. 

Locations 
using 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

Col. 
[6] 

sys. Qty func. multizone Multizone- CFD- CFD-

Locations 
using 

CFD data equiv. 
data optimal benchmarked optimal 

Locations 
using 

CFD data 
to [7]? 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

1 4 D 111,351, 
442,544 1.0 1.0 1.0 Y 

2 4 E See note 

3 3 D 111,323, 
452 1.0 1.0 1.0 Y 

4 3 E See note 
5 2 D 111,551 1.0 1.0 1.0 Y 
6 2 E See note 

7 1 D 
451,452, 
453,551, 

or 552 
250.75 Range from 

1.25 to 1.5 1.0 151,152, 
or 153 N 

8 1 E See note 

Eng 1 D 
(E) 

555 251.25 
(0) 

1.5 
(1.5e-3) 

1.0 
(1.2e-3) 144 N 

Note: For all contaminant releases, occupant exposure is always 0 kg/kg. Therefore, all sensor 
systems designed using multizone model data result in the same occupant exposure, 0 kg/kg, 
and there are no "optimal" designs. 

Table 2-7. Sensor system designs for Test Case 7 using zona model dal a. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 215,253, 
444,521 

1.0 
(4.3e-6) 1.0 1.0 Y 

2 4 E 131,241, 
425,552 

4.3e-6 
(1.0) 

1,2e-3 1,2e-3 Y 

3 3 D 224,312, 
552 

1.0 
(4.3e-6) 
4.3e-6 
(1-25) 

1.0 

1,2e-3 

1.0 Y 

4 3 E 334,422, 
555 

1.0 
(4.3e-6) 
4.3e-6 
(1-25) 

1.0 

1,2e-3 1,2e-3 Y 

5 2 D 321,552 1 0 i 10 (4.3e-6) i 1.0 Y 

6 2 E 235,451 4,3e-6 
(500.5) 1.2e-3 1,2e-3 Y 

7 1 D 451,452, 
or 453* 

1.0 
(4.3e-6) 

Range from 
1.25 to 1.5 1.0 151,152, 

or 153 N 

8 1 E 451,452, 
or 453 

4.3e-6 
(1.0) 

Range from 
1,3e-3 to 

1.5e-3 
1.2e-3 151,152, 

or 153 N 

Eng 1 D 

(E> 555 1.5 
(1.2e-5) 

1.5 
(1.5e-3) 

1.0 
(1.2e-3) 144 N 

* almost unique sensor system 
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The detection times for the sensor placed at the exhaust were 2.0, 2.0, 1.0, and 1.0 

min, respectively for each release location. Some of the multizone- and zonal-optimal 1-

sensor systems (locations 451, 551, and 552) also exhibited these detection times. The 

remaining multizone- and zonal-optimal 1-sensor systems (locations 452 or 453) had 

detection times of 2.0 min, 1.0 min, 1.0 min, and 1.0 min, respectively for each release 

location. Thus, placing a sensor at the exhaust was no more a robust design than placing a 

sensor at the two of the locations designed using multizone and zonal model data. 

Similar to Test Case 1, a sensor system designed for Test Case 7 to minimize 

detection time did also guarantee that occupant exposure was minimized, whether using 

multizone or zonal model data to design the sensor system. However, a sensor system 

designed to minimize occupant exposure did not also guarantee that detection time was 

minimized, whether using multizone or zonal model data to design the sensor system 

(compare Sensor sys. #3 and 4 in Table 2-7). For Test Case 7, the occupant exposure was 

0 kg/kg for all releases, but only when multizone model data was used. In contrast, for 

Test Case 1, the occupant exposure was always 0 kg/kg only for releases #2 to #4, using 

data from either simpler airflow model. 

Figure 2-14 shows the contaminant contour plots for Test Case 7, Release #1 for 

all three airflow models at two times. Test Case 7 was the case where furniture was 

placed beneath the diffuser. When the contaminant was released from location #1, the 

contours plots of Test Case 7 modeled with the multizone model showed that neither 

occupant was exposed to the contaminant (Figure 2-14a and b). Note that even though the 

contour lines may fall within the subzone of an occupant, the concentration there was 

always zero. On the other hand, the contour plots of the contaminant data simulated by 
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the zonal and CFD models showed that at least one of the occupants was exposed to the 

contaminant within the first minute. 

The optimal 1-sensor locations designed to minimize detection time using 

multizone model and zonal model data for Test Case 8 was the same as that designed to 

minimize detection time for Test Case 7. The closest CFD-optimal subzone locations for 

a 1-sensor system would have been subzone location 151, 152, or 153 for Test Cases 7-8. 

This location was approximately 3.0 m away from the locations designed using data from 

the simpler airflow models. The 1-sensor systems designed to minimize detection time 

using data from three airflow models for the test cases for Zone A[-] are summarized in 

Table 2-8 and shown graphically in Figure 2-15. The values in the last column of Table 

2-8 will be discussed in Sec. 2.10.3. 

2.10.2 Zone^[+] 

Test Cases 9 - 16 are associated with the zones with the wall-mounted diffuser 

and exhaust. Keep in mind that Test Cases 11 and 12 were not simulated since there was 

no furniture and thus, its location could not be varied (see Sec. 2.4 and Table 2-3). 

Sec. 2.10.2.1 and 2.10.2.2 will discuss the results for Test Cases 9 (no furniture, no 

infiltration), 15 (furniture under diffuser, no infiltration) and 16 (furniture under diffuser, 

with infiltration), respectively. Details for the results of Test Cases 10 (no furniture, with 

infiltration), 13 (furniture under exhaust, no infiltration), and 14 (furniture under exhaust, 

with infiltration) were not presented since they shared similarities with Test Cases 9, 15 

or 16. In general, sensor systems designed using data from the multizone and zonal 

models (i.e., simpler airflow models) were able to perform just as well as those 
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Figure 2-14. Contaminant contour plots for Test Case 7, Release #1. 
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Figure 2-15.1-sensor systems designed to minimize detection time using data from 
three airflow models for Zone/l[-]. 

Table 2-8. Summary of 1-sensor systems designed to minimize detection time using 
data from three airflow models for Zone^[-]. 

Test Furniture Furniture Infiltration Multizone Zonal Closest Number of 
Case (Y/N)? location (Y/N)? Locations Locations CFD CFD-optimal 

location 1-sensor sys. 
1 N n/a N 452 451,452 252 45 
2 N n/a Y 451 451,452 252 37 
5 Y Exhaust N 451 451,452 251,252 52 
6 Y Exhaust Y 451 451 452 252 46 
7 Y Diffuser N 451,452, 451,452, 151,152, 35 

453,551, 453 153 
552 

8 Y Diffuser Y 451,452, 451,452, 151,152, 27 
453,551, 453 153 

552 

designed using more accurate CFD data for Test Cases 9 - 1 6 , except for the 1-sensor 

systems for Test Cases 15 and 16. Also, neither the absence nor presence of furniture 

or infiltration affected the ability of the simpler airflow models to design sensor 

systems capable of performing just as well as those designed using more accurate CFD 

data, except for the 1-sensor systems for Test Cases 15 and 16. Lastly, the common 

engineering design practice of placing a sensor at the exhaust resulted in optimal 

performance when benchmarked with CFD data. 
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2.10.2.1 Test Case 9 (no furniture, no infiltration) 

Table 2-9 and Table 2-10 show that the 2-, 3-, and 4-sensor systems designed 

using data from the multizone and zonal model, respectively, were able to perform just as 

well as those designed using more accurate CFD data for Test Case 9. The 1-sensor 

system designed using either multizone or zonal model data for Test Case 9 was either 

subzone location 451 or 551 when minimizing detection time. These locations were 

horizontally adjacent subzones. These locations were marked with an "*" because these 

were the only two locations where a 1-sensor system was both multizone- and zonal-

optimal. Their CFD-benchmarked detection times were both calculated as 1.0 min, which 

were equal to the CFD-optimal detection time of 1.0 min for a 1-sensor system. 

It should be noted that all of the sensor systems designed using the simpler 

airflow models for the test cases for the wall-mounted diffuser were optimal when 

benchmarked with CFD data, except for Test Cases 15 and 16. In fact, data from the 

CFD model indicated that every sensor location (i.e., every subzone) was an optimal 

location to place a sensor for all test cases for the wall-mounted ceiling diffuser, except 

for Test Cases 15 and 16. This was due to the fact that the CFD model calculated greater 

transport of each contaminant for the test cases for the wall-mounted diffuser when 

compared with the test cases for the ceiling-mounted diffuser. For instance, Figure 

2-16(a-b) compares the contour plots of Test Cases 1 and 9. Both test cases were those 

with no furniture and no infiltration in Zone A[-] (ceiling-mounted diffuser and exhaust). 

Figure 2-16(c-d) compares the contour plots of Test Cases 5 and 13. Both test cases were 

those with furniture under the exhaust and no infiltration in Zone A[+] (wall-mounted 
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Table 2-9. Sensor system designs for Test Case 9 using multizone model data 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 155,331, 
414,551 

1.0 
(7.8e-8) 

See note 

2 4 E 123,231, 
252,551 

7.8e-8 
(1.0) 

See note 

3 3 D 151,433, 
541 

1.0 
(7.8e-8) 

See note 

4 3 E 211,414, 
551 

7.8e-8 
(1.0) 

See note 5 2 D 551,211 1.0 
(7.8e-8) See note 

6 2 E 111,451 7.8e-8 
(1.0) 

See note 

7 1 D 451 or 
551* 

1.25 
(1.14e-6) 

See note 

8 1 E 441 7.8e-8 
(250.75) 

See note 

Eng 1 D 
(E) 

551 1.25 
(1.1 e-6) 

See note 

Note (also applies to Table 2-10): Using CFD data, every sensor location (i.e., subzone locations) 
was an optimal location to place a sensor, 'almost unique sensor system 

Ta t>Ie 2- 0. Sensor system designs for Test Case 9 using zonal model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 144,321, 
451,522 

1.0 
(8.1 e-8) 

See note 

2 4 E 211,321, 
521,552 

8.5e-8 
(10) 

See note 

3 3 D 131,443, 
551 

1.0 
(8.1 e-8) 

See note 

4 3 E 145,211, 
451 

8.1e-8 
(1-0) 

See note 5 2 D 131,451 1.0 
(8.1 e-8) See note 

6 2 E 331,551 8.1 e-8 
(1.0) 

See note 

7 1 D 451 or 
551* 

1.25 
(1,2e-6) 

See note 

8 1 E 441 8.1e-8 
(250.75) 

See note 

Eng 1 D 
(E) 551 1.25 

(1.2e-6) 

See note 

* almost unique sensor system 
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diffuser and exhaust). There was greater transport of the contaminant in Test Cases 9 and 

13 (wall-mounted diffuser and exhaust) than in Test Cases 1 and 5 (ceiling-mounted 

diffuser and exhaust). Only for two cases did the CFD model not indicate that that every 

sensor location (i.e., every subzone) was an optimal location to place a sensor for Zone 

A[+], They were Test Cases 15 and 16 (furniture under diffuser). More details can be 

found in Sec. 2.10.2.2. 

Similar to Test Case 1, occupant exposure was always 0 kg/kg for releases #2 to 

#4 when using data from a simpler airflow model for Test Case 9. None of the sensor 

systems in Table 2-9 and Table 2-10 indicated that sensor systems designed to minimize 

occupant exposure did not also guarantee that detection time was minimized. This was 

due to the fact the sensor systems reported were non-unique (i.e., were not the only 

sensor systems that were multizone- or zonal-optimal for a given number of sensors). 

Therefore, sensor systems designed to minimize occupant exposure could not also 

minimize detection time given the fact that the occupant exposure was always 0 kg/kg for 

releases #2 to #4. 

For releases #2 to #4, the simper airflow models calculated zero occupant 

exposure for all test cases simulated by the simpler airflow models for Zone A[+], 

Therefore, for all test cases simulated by the simpler airflow models for Zone^l[+], 

minimizing occupant exposure did not guarantee that detection time was also 

minimized. This was also found for all test cases for Zone 

The optimal 1-sensor location designed to minimize detection time using data 

from the simpler airflow models for Test Cases 10, 13, and 14 were the same (either 
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Figure 2-16. Contaminant contour plots from CFD model at t = 1.0 min sec for 
Release #1. 

subzone location 451 or 551). These locations were the same as the optimal 1-sensor 

locations designed to minimize detection time using data from the simpler airflow models 

for Test Case 9. Thus, also for Test Cases 10, 13, and 14, the 1-sensor systems designed 

using data from the simpler airflow models did perform as well as those designed using 

more accurate CFD data. The 1-sensor systems designed to minimize detection time 

using data from three airflow models for the test cases for Zone A[+] are summarized in 
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Table 2-15 and shown graphically in Figure 2-17. The values in the last column of Table 

2-15 will be discussed in Sec. 2.10.3. 

2.10.2.2 Test Cases IS (furniture under diffuser, no infiltration) 
and 16 (furniture under diffuser, with infiltration) 

Table 2-11 and Table 2-12 show that the 2-, 3-, and 4-sensor systems designed 

using data from the multizone and zonal model, respectively, were able to perform just as 

well as those designed using more accurate CFD data for Test Case 15. Table 2-13 and 

Table 2-14 show that the 2-, 3-, and 4-sensor systems designed using data from the 

multizone and zonal model, respectively, were able to perform just as well as those 

designed using more accurate CFD data for Test Case 16. 

The 1-sensor systems designed using multizone model data was either subzone 

location 451 or 551 when minimizing detection time for Test Case 15. The CFD-

benchmarked detection time for only one of these locations was equal to the CFD-

optimal detection of 1.0 min for a 1-sensor system. Therefore, a 1-sensor system designed 

using data from a multizone model could not perform just as well as one designed using 

more accurate CFD data. On the other hand, the 1-sensor system designed using zonal 

model data was subzone location 451 when minimizing detection time for Test Case 15. 

The CFD-benchmarked detection time for this location was equal to the CFD-optimal 

detection of 1.0 min for a 1-sensor system. Therefore, a 1-sensor system designed using 

data from a zonal model could perform as well as one designed using more accurate CFD 

data. 

The 1-sensor systems designed using either multizone or zonal model data was 

either subzone location 451 or 551 when minimizing detection time for Test Case 16. 
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The CFD-benchmarked detection time for both of these locations was greater than the 

CFD-optimal detection of 1.0 min for a 1-sensor system. Therefore, a 1-sensor system 

designed using data from either simpler airflow model could not perform as well as one 

designed using more accurate CFD data for Test Case 16. The 1-sensor systems designed 

to minimize detection time using data from three airflow models for the test cases for 

Zone A[+] are summarized in Table 2-15 and shown graphically in Figure 2-17. The 

values in the last column of Table 2-15 will be discussed in Sec. 2.10.3. 

The results for Test Cases 15 and 16 were different than for the rest of the test 

cases for Zone A[+] because in these two test cases, not every subzone location was an 

optimal one when calculated using CFD data. When there was furniture below the 

diffuser, as was the case for Test Cases 15 and 16, contaminant transport was not as great 

when compared to the cases without furniture or furniture placed below the exhaust. 

In Test Case 15, there were only two subzone locations (321 and 551) where the 

detection time calculated by using CFD data was not 1.0 min for every release. In Test 

Case 16, there were even more subzone locations (131, 321, 321, 451, and 551) where the 

detection time calculated by using CFD data was not 1.0 min for every release. Test Case 

16 included infiltration (which was negative in all test cases, meaning air was leaving the 

zone) while Test Case 15 did not. Thus, when there was infiltration and furniture under 

the diffuser (Test Case 16), contaminant transport was even less effective than when there 

was no infiltration (as calculated using CFD data). 
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Table 2-11. Sensor system designs for Test Case 15 using multizone model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Objective function value 
(complementary obi. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 111,232, 
434,551 1.0 1.0 1.0 Y 

2 4 E See note 

3 3 D 111,332, 
551 1.0 1.0 1.0 Y 

4 3 E See note 
5 2 D 111,451 | 1.0 | 1.0 | 1.0 I Y 
6 2 E See note 

7 1 D 451 or 
551* 250.75 1.0 or 1.25 1.0 Y o r N 

8 1 E See note 

Eng 1 D 
(E) 

551 250.75 
(0) 

1.0 
(3.2e-4) 

1.0 
(3.2e-4) Y 

Note: For all contaminant releases, occupant exposure is always 0 kg/kg. Therefore, all sensor 
systems designed using multizone model data result in the same occupant exposure, 0 kg/kg, 
and there are no "optimal" designs, 'almost unique sensor system 

Table 2-12. Sensor system designs for Test Case 15 using zonal model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 121,212, 
351,541 

1.0 
(7.0e-9) 1.0 1.0 Y 

2 4 E 111,132, 
351,441 

7.0e-9 
(1.0) 

3.2e-4 3.2e-4 Y 

3 3 D 231,342, 
551 

1.0 
(7.0e-9) 1.0 1.0 Y 

4 3 E 131,224, 
451 

7.0e-9 
(1.0) 

3.2e-4 3.2e-4 Y 

5 2 D 131,451 1.0 
(7.0e-9) 1.0 1.0 Y 

6 2 E 141,551 7.0e-9 
(1.0) 

3.2e-4 3.2e-4 Y 

7 1 D 451* 1.25 
(1 -2e-7) 1.0 1.0 Y 

8 1 E 331 7.0e-9 
(500.5) 3.2e-4 3.2e-4 Y 

Eng 1 D 
(E) 551 1.5 

(5.0e-7) 
1.0 

(3.2e-4) 
1.0 

(3.2e-4) Y 

* unique sensor system 
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Table 2-13. Sensor design designs for Test Case 16 using multizone model data. 

Sensor Qty 

[2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) Locations 
using 

CFD data 

[8] 

Col. 
[6] 

sys. 

[1] 

Qty 

[2] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

equiv. 
to [7]? 

[9] 

1 4 D 111,122, 
451,542 1.0 1.0 1.0 Y 

2 4 E See note 

3 3 D 111,251, 
541 

1.0 1.0 1.0 Y 

4 3 E See note 
5 2 D 111,551 1.0 1.0 1.0 Y 
6 2 E See note 

7 1 D 451 or 
551* 250.75 1.25 1.0 252 N 

8 1 E See note 

Eng 1 D 
(E) 

551 250.75 
(0) 

1.0 
(3.5e-4) 

1.0 
(3.5e-4) Y 

Note: For all contaminant releases, occupant exposure is always 0 kg/kg. Therefore, all sensor 
systems designed using multizone model data result in the same occupant exposure, 0 kg/kg, 
and there are no "optimal" designs. * almost unique sensor system 

Table 2-14. Sensor design designs for Test Case 16 using zonal model data. 

Sensor 
sys. 

[1] 

Qty 

P ] 

Obj. 
func. 

PI 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

P ] 

Obj. 
func. 

PI 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 154,221, 
451,554 

1.0 
(6.3e-9) 1.0 1.0 Y 

2 4 E 221,335, 
451,522 

6.3e-9 
(1.0) 3.5e-4 3.5e-4 Y 

3 3 D 153,321, 
551 

1.0 
(6.3e-9) 1.0 1.0 Y 

4 3 E 321,433, 
551 

6.3e-9 
(1.0) 3.5e-4 3.5e-4 Y 

5 2 D 221,551 1.0 
(6.3e-9) 1.0 1.0 Y 

6 2 E 111,451 6.3e-9 
(1.0) 

3.5e-4 3.5e-4 Y 

7 1 D 451 or 
551* 

1.5 
(4.7e-7) 

1.25 1.0 252 N 

8 1 E 321 6.3e-9 
(500.5) 3.9e-4 3.5e-4 252 N 

Eng 1 D 
<E> 551 1.5 

(4.7e-7) 
1.0 

(3.5e-4) 
1.0 

(3.5e-4) Y 

* almost unique sensor system 
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Figure 2-17.1-sensor system designed using three airflow models 
for minimizing detection time for Zone^4[+]. 

Table 2-15. Summary of 1-sensor systems designed using 
three airflow models for ZoneA[+]. 

Test 
Case 

Furniture 
(Y/N)? 

Furniture 
location 

Infiltration 
(Y/N)? 

Multizone 
Locations 

Zonal 
Locations 

Closest 
CFD 

location 

Number of 
CFD-optimal 
1-sensor sys. 

9 N n/a N 451,551 451,551 451,551 125 
10 N n/a Y 451,551 451 551 451,551 125 
13 Y Exhaust N 451,551 451 551 451,551 125* 
14 Y Exhaust Y 451,551 451,551 451,551 125" 
15 Y Diffuser N 451,551 451 451 123 
16 Y Diffuser v " 451,551 451,551 452,552 120 

* 125 is the total number of subzones. 

2.10.3 Effects of furniture and infiltration on sensor system design 

Table 2-8 and Table 2-15 summarize the 1-sensor systems designed to minimize 

detection time using the three airflow models for both zones tested. The last column 

shows the number of CFD-optimal 1-sensor systems for each test case. The pairs of test 

cases with and without infiltration to compare are 1 and 2; 5 and 6; and 7 and 8 for Zone 

A[-] (Table 2-8). The pairs of test cases with and without infiltration to compare are 9 and 

10; 13 and 14; and 15 and 16 for Zone A[+] (Table 2-15). The tables show that for each 

pair, the test case with infiltration (Test Cases 2, 6, and 8) had fewer possible optimal 1-

sensor systems than the test cases without infiltration (Test Cases 1, 5, and 7) for Zone 
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A[-]. For Zone A[+], this was observed only when comparing Test Cases 15 and 16. For 

these two test cases, not every sensor location (i.e., subzone location) was an optimal 

location to place a sensor. Nevertheless, for both test zones, contaminant transport was 

less effective when infiltration was modeled as calculated using CFD data. 

For the 2-, 3-, and 4-sensor systems designed using data from either multizone or 

zonal model data, the inclusion of infiltration did not affect the performance of the 

sensor systems designed using data from the simpler airflow models. Only the 

performance of the 1-sensor systems was affected by the inclusion of infiltration, 

specifically for Test Cases 15 and 16. 

Groups of test cases with and without furniture can also be compared using Table 

2-8 and Table 2-15. The pairs of test cases with and without furniture to compare are 1, 5, 

and 7 (without infiltration); and 2, 6, and 8 (with infiltration) for ZorieA[-] (Table 2-8). 

The pairs of test cases with and without furniture to compare are 9, 13, and 15 (without 

infiltration); and 10, 14, and 16 (with infiltration) for Zone A[+] (Table 2-15). These 

comparisons show that the inclusion of furniture under the exhaust increased the number 

of optimal 1-sensor locations designed using CFD data, with or without infiltration. 

Contaminant transport was more effective when furniture under the exhaust was 

modeled as calculated using CFD data. This could be attributed to the furniture allowing 

the contaminant to remain longer inside the zone before being exhausted out. In contrast, 

the inclusion of furniture under the diffuser decreased the number of optimal 1-sensor 

locations designed using CFD data, with or without infiltration. Contaminant transport 

was less effective when furniture under the diffuser was modeled as calculated using 

CFD data. Placing furniture under the diffuser did not allow the supply jet to reach the 
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floor of the zone, and thus did not allow effective distribution of the contaminant that was 

modeled as being released from the floor. The effect of furniture under the diffuser was 

more clearly observed in Zone A[-] (ceiling-mounted diffuser) than in Zone A[+] (wall-

mounted diffuser) because the supply jet in Zone A[+] traveled horizontally along the 

ceiling. 

For the 2-, 3-, and 4-sensor systems designed using data from either multizone or 

zonal model data, the inclusion of furniture did not affect the performance of the sensor 

systems designed using data from the simpler airflow models. Only the performance of 

the 1-sensor systems was affected by the inclusion of furniture. 

2.10.4 Effects of test space characterization on sensor system design 

In addition the zone characteristics above, the zones tested in this research were 

also characterized more generally by local mean age of air (LMA) In order to calculate 

LMA, a uniform initial concentration of CO2 was specified in the airflow model. The 

transient decay of SF6 due to the ventilation system operation was then calculated by the 

airflow model. The local mean age of air was defined as [95]: 

where pe was the slope of the exponential decay of the contaminant, C, was the 

concentration time i, C0 was the initial concentration, CM was the final concentration, ST 

was the sampling interval, and Mwas the number of concentration readings. The local 

mean of air was calculated for each subzone. 

Table 2-16 reports the mean±standard deviation of the local mean age of air 

calculated across all subzones for Test Case 1 (ceiling-mounted diffuser and exhaust, no 

(12) 
C. o 
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furniture, no infiltration), Test Case 9 (wall-mounted diffuser and exhaust, no furniture, 

no infiltration), as well as the three test spaces in the preliminary studies. LMA was 

calculated using CFD data. 

Table 2-16 shows that for Test Case 1, the standard deviation was about 20% of 

the mean. For Test Case 9, the standard deviation was about 11% of the mean. Thus, it 

could be concluded that Test Case 9 was more well-mixed than Test Case 1 because its 

standard deviation value was relatively smaller. This was why every subzone in Test Case 

9 was an optimal one. Nevertheless, for both test cases, the sensor systems designed 

using data from simpler airflow models performed just as well as those designed using 

CFD data even though neither test case would be considered well-mixed (standard 

deviation <6% of mean [108]), as evaluated using CFD data. 

Table 2-16 shows that for the test spaces in the preliminary studies, the standard 

deviation of LMA was between 36-55% of the mean. Despite this fact, the sensor systems 

designed using data from simpler airflow models performed just as well as those 

designed using CFD data for the small office and office suite. Therefore, it could be 

concluded that the degree of well-mixing, as evaluated by LMA, could not determine 

Table 2-16. Mean age of air for test cases in Chapter 2 
Test 
Case 

Local mean age of air (LMA) (sec) 
MeaniStandard Deviation 

1 525±106 
9 476±56 

Preliminary: 
small office 

370±135 

Preliminary: 
large hall 

472±207 

Preliminary: 
office suite 

376±206 
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whether or not sensor systems designed using data from simpler airflow models 

would perform just as well as those designed using more accurate data. 

2.11 Conclusions 

Four releases of a contaminant were modeled in a multizone and zonal model. 

Sensor systems were then designed using contaminant data simulated by each model, 

along with an optimization technique, genetic algorithm. The performance of these sensor 

systems was benchmarked with CFD contaminant data, in lieu of experimental data. It 

was found that for both Zone A[-] (ceiling-mounted diffuser and exhaust) and Zone /([+] 

(wall-mounted diffuser and exhaust): 

(1) Data from simpler airflow models that included simple diffusers were able to 

design sensor systems capable of performing just as well as those designed using 

more accurate CFD models that included more complex diffusers; 

(2) 2-, 3-, and 4-sensor systems designed using data from the simpler airflows were 

able to perform just as well as those designed using more accurate CFD data; 

(3) Sensor systems designed using data from the simpler airflow models to minimize 

detection time did not guarantee that detection time was also minimized. This was 

due in combination to the diffuser and exhaust layout, as well as the locations of 

the contaminants released. Both these factors resulted in zero occupant exposure 

for three out of the four simulated releases; 

(4) The inclusion of furniture and/or infiltration did not affect the performance of the 

2-, 3-, and 4-sensor systems designed using data from the simpler airflow models; 
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(5) The inclusion of furniture under the exhaust increased the number of CFD-

optimal 1 -sensor systems, indicating that furniture under the exhaust improved 

contaminant transport; 

(6) The inclusion of furniture under the diffuser decreased the number of CFD-

optimal 1-sensor systems, indicating that furniture under the diffuser reduced 

contaminant transport; 

(7) The inclusion of infiltration decreased the number of CFD-optimal 1-sensor 

systems, indicating that infiltration reduced contaminant transport. 

It was found that for only Zone A[+] (wall-mounted diffuser and exhaust): 

(1) Even 1-sensor systems designed using data from the simpler airflows were able to 

perform just as well as those designed using more accurate CFD data, but only for 

the cases where there was either no furniture or furniture under the exhaust; 

(2) CFD data indicated that every sensor location (i.e., every subzone) was an optimal 

location to place a sensor for all test cases, but only for the cases where there was 

either no furniture or furniture under the exhaust; 

(3) For the cases with furniture under the diffuser, the number of CFD-optimal 1-

sensor systems decreased when compared to the cases without furniture. The 

inclusion of infiltration further decreased the number of CFD-optimal 1-sensor 

systems. This result was also found for Zone A[-] test cases. 

The common engineering design practice of placing a sensor at the exhaust 

resulted in non-optimal performance for ZoneA[-] (ceiling-mounted diffuser and 

exhaust). Placing a sensor at the exhaust was no more, and no less, a robust design than 

placing a sensor at the location designed using multizone and zonal model data. This 
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common engineering design practice resulted in optimal performance when benchmarked 

with CFD data for Zone A[+] (wall-mounted diffuser and exhaust). 

Hypothesis #1 was: for each class of zone or building configuration, there exists a 

simplest forward airflow model to simulate indoor airflow patterns and contaminant 

transport for systematic sensor system design. In this research, it could be concluded that 

for sensor systems consisting of more than one sensor, none of the zone characteristics 

tested in this research affected the performance of sensor systems designed using data 

from simpler airflow models. Therefore, the simplest forward airflow model for 

designing multiple-sensor systems for the zone tested in this research, with or without 

furniture and/or infiltration, was the subzoned-mulitzone multizone model. 

For sensor systems consisting of one sensor, all of the zone characteristics tested 

in this research affected the performance of sensor systems designed using data from 

simpler airflow models. Therefore, the simplest forward airflow model for designing 1-

sensor systems for the zone tested in this research, with or without furniture and/or 

infiltration, was the CFD model. 

2.12 Plans for publication 

A possible publication would be "Method for classifying indoor spaces and the 

selection of simplest airflow model for systematic indoor air sensor system design". This 

work may be submitted to: 

• Indoor Air, impact factor of 1.59 

• Building and Environment, impact factor of 1.192 
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2.13 Future work 

The conclusions drawn from the research in this chapter are very promising - for 

a small zone, even with furniture and/or infiltration, data from a simpler airflow could be 

used to design sensor systems that perform just as well as those designed using more 

accurate data. The sensor quantity should be greater than one. Nevertheless, the work was 

limited in the amount of variation between test cases. Only two diffuser and exhaust 

layouts, two furniture locations (and only one size), and two levels of airtightness (none 

to leaky) were tested. 

Since the long-term objective of this research is to be able to select the 

simplest forward airflow model to simulate indoor airflow and contaminant 

transport for designing indoor air sensor systems for every class of zone, there are 

many more intermediate "levels" of (and additional) zone characteristics that need 

to be tested. Such levels include but are not limited to: variation in zone shape and size, 

(multiple) diffuser and exhaust layouts, furniture location and size, and other levels of 

infiltration. Additional zone characteristics include but are not limited to: non-isothermal 

cases and moving/more occupants (or contaminant sources). 

Figure 2-18 shows the full computer experimental process that can be taken for 

future work. The first step is to include as many input factors (i.e., zone characteristics) 

as desired. Test cases can be set up using a factorial design. Sensor systems can then be 

designed using contaminant data from the simpler airflow models for each test case. 

Using benchmarked sensor system performance, input factors can be eliminated based on 

their effect on sensor system performance. If more input factors can be included, then 

new test cases can be set up with the additional input factors, leaving out the eliminated 
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ones. Fractional factorial design can be used to set up test cases if the number of input 

factors is large, and the time to run computer simulations of airflow and contaminant 

transport would be impractical, or a subset of the test cases can represent the entire set. 

The number of test cases in a fractional factorial design would be 2k!?f, where/ is the 

fraction. For instance, i f /= l , then the number of test cases is reduced by half, and if/=2, 

then the number of tests cases is reduced by a fourth, etc. In this manner, for any zone 

in the future, the simplest, but also most appropriate, forward airflow model may be 

used to simulate indoor airflow and contaminant transport for systematic indoor air 

sensor system design. There will be no need to simulate contaminant transport in a 

multizone model only for its convenience. There will be no need to simulate contaminant 

transport in a CFD model only for its accuracy. A complete study such as the one 

proposed here for future work will have systematically selected an airflow model based 

on convenience and accuracy. 

A qualitative analysis was performed in this research when discussing how 

various zone characteristics affected the appropriateness of a simpler airflow model to 

provide contaminant data for sensor system design. Since a factorial design was used to 

design the computer experiments in this research, a statistical test such as ANOVA may 

be used to quantitatively compare the performances of the sensor system designs in future 

work. 
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Figure 2-18. Flow chart of computer experimental process. 
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3. CHAPTER 3: TESTING HYPOTHESIS #2 -
DEVELOPING AND UTILIZING AN INVERSE AIRFLOW MODEL 

FOR SINGLE ZONE 

If one is has the resources and information to perform a forward simulation of an 

indoor space, then the results reported in Chapter 2 can be very helpful in deciding which 

forward airflow model to use for sensor system design. However, if resources and 

information are limited, then one can use an appropriate inverse airflow model. 

Inverse modeling is a potential tool for gathering the information needed for 

accurately estimating airflow and contaminant transport in real-time. It requires much 

less information than a forward model would. Utilizing the sensor readings from a 

selected number of locations, an inverse model may be able to estimate the measurements 

at non-sensored locations. Three methods were tested as inverse models. They were 

singular value decomposition without infiltration (invSVDO) and with infiltration 

(invSVDl) and inverse-multizone (invC, where the "C" stands for the CONTAM 

multizone model). 

3.1 Chapter 3 outline 

Sec. 3.2 presents inverse models used to inversely estimate indoor airflow using 

limited synthetic velocity measurements provided by CFD. Sec. 3.3 presents the test 

zones used to the inverse models. Sec. 3.4 describes the sensor locations where synthetic 

velocity measurements are taken. The results are discussed in Sec. 3.5, conclusions in Sec. 

3.6, and future work in Sec. 3.6. 
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3.2 Inverse models 

3.2.1 Singular value decomposition (invSVDO and invSVDl) 

SVD is a method for solving underdetermined systems [109]. The system of 

equations to inversely solve for indoor airflow are underdetermined. In the study of 

indoor airflow, for any control volume of air, the net mass flow, m, must equal zero in 

order to satisfy continuity. Mathematically, 

5 > = i > , 4 = 0 (13) 

i=l i=1 

where the subscript i indicates a face of a control volume (each control volume is 

assumed to have six sides), p is the density of air in kg/m3, v is the velocity of air in m/s, 

and A is a control surface. For a system of N control volumes, 
N 

V 

n=1 
P Z 0 (14) 

where A contains the areas of the control faces of each respective control volume. The 

boundary conditions and unknowns are contained in the quantity pEv. Since there are up 

to six unknown v (left, right, up, down, front and back velocities) for any control volume, 

the system becomes underdetermined as N increases. The linear system in Eq. (14), if 

just- or over-deteremined, can be solved by inverting A and multiplying by the right-

hand-side. However, if the system is underdetermined, there are an infinite number of 

solutions to pSv. Thus, to solve an underdetermined system, SVD uses the pseudoinverse 

of A. A can be factorized into: 

A = ULVT (15) 
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where E contains the singular values of A on its diagonal, U and V are orthogonal 

matrices containing corresponding singular vectors in their columns, and the superscript 

T is the transpose. These elements are used to calculate the pseudoinverse of A, A*. 

where is the transpose of 2 with every non-zero entry replaced by its reciprocal. Thus, 

the original system represented by Eq. (14) can be solved by: 

The accuracy of SVD can be checked by comparing the original "right hand side", 

b, with the one obtained by multiplying A with pEv from Eq. (17). Traditional forward 

airflow models satisfy continuity upon completion of the solution process. Their ultimate 

objective is to solve for airflow rates, but all take an indirect approach. In contrast, SVD 

is used to directly solve for airflow rates. To use SVD as an inverse model (invSVD), 

additional information about the unknowns, v, can be provided by real or synthetic sensor 

data. 

The invSVD model that did not include infiltration was called invSVDO. The 

invSVD model that did include infiltration was called invSVDl. A constant infiltration 

rate of -0.04 kg/s was included as an additional known boundary condition in addition to 

the inlet airflow rate. 

Another set of equations describes energy balance for each subzone and can also 

be used to solve for airflow: 

A* = V2TTJ (16) 

pEv = A*Xb (17) 

N N 

(18) 
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where c is the specific heat of air, T contains the temperature of each subzone, h contains 

the convection coefficient for each surface (such as wall, floor, etc.) of a subzone, A 

contains the area of each surface, and Tw contains the temperature of each surface. It was 

assumed that all of the quantities are known except for v. 

3.2.2 Inverse-multizone (invC) 

The inverse-multizone model, invC, was simply using the traditionally forward 

multizone model, CONTAM, "inversely". This was done by specifying constant mass 

flow elements in CONTAM where, traditionally one would not. Such locations may be in 

the center of a room or in a doorway, where a sensor might be located. A forward steady-

state simulation was then run in order for CONTAM to solve the unknown airflow rates. 

It should be noted that the invSVD model utilizes linear relationships to solve for airflow, 

whereas the invC model utilizes nonlinear relationships to solve for airflow. 

3.3 Zones simulated 

Three zones were simulated. Zone A was 3mx 2.7mx 3m (Figure 3-la). The zone 

has one inlet and one outlet. Both are 0.6mx0.6m. Incoming flow is isothermal. The inlet 

velocity is 1 m/s and the density of air is constant throughout the room at 1.225 kg/m3. 

The zone size and airflow conditions are typical conditions for a small office [110]. Two 

additional zones were also simulated. The size of these two zones and sizes of the inlets 

and outlets are identical to those of Zone A. The only differences are the location of the 

inlet and outlet. For Zone B, the location of the inlet was moved toward the center of the 

ceiling while the location of the outlet remained the same. For Zone C, the location of the 

outlet was moved toward the center of the ceiling while the location of the inlet remained 

the same. 
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Each of the simulated zones was subdivided into 4 x 4 x 4 subzones. The width of 

the subzones in the x- and z - directions were either 0.6 or 0.9m. The height of 

eachsubzone was 0.675m. This spacing ensured that the inlet and outlet were contained in 

a single subzone. The area of the control faces associated with each control volume was 

calculated given the subzone dimensions. Additional configurations of subzone size and 

number were evaluated as well. Unlike CFD modeling, however, the number and size of 

the subzones in algebraic models do not greatly affect the results of models using the 

subzonal approach. This conclusion was also reported by Mora et al. [17]. 

The invC model required specifying the pressure-flow relationship between 

subzones where no physical boundary, such as a wall, exists. The literature on subzonal 

modeling uses the power-law relationship with a discharge coefficient of 0.78 and an 

exponent of 0.5 [17], 
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Figure 3-1. Simulated Zones A, B, and C. 

(c) 



www.manaraa.com

108 

3.4 Synthetic sensor data 

In lieu of actual sensor data, synthetic velocity and temperature data from CFD 

simulations was provided to each of the inverse models. The grid size for the CFD model 

was 30x26x30, roughly O.lmxO.lmxO.lm cells. The standard k-s turbulence model was 

used to solve the steady-state airflow. The grid size and turbulence model here were also 

used by Murakami and Kato [110]. For the invSVD models, synthetic velocity data was 

provided to matrix v in Eq. (14). Synthetic temperature data was provided to the matrix T 

in Eq. (18). For the invC model, synthetic velocity data and subzone face area was used 

to specify constant mass flow elements in CONTAM. 

Initially, the amount and location of the synthetic velocity data was pre-selected. 

Then, genetic algorithm (GA) was used to optimize the amount and location of the 

synthetic velocity data in order to optimize the estimation accuracy of the inverse airflow 

model. The temperature inside each subzone, as well as along the physical surfaces 

(ceiling, walls, and floor) of the zone were provided to the invSVD models. The use of 

temperature sensors to inversely estimate airflow using the invC model was not 

performed since CONTAM did not have the ability to perform thermal calculations. 

3.4.1 Pre-selected velocity sensor locations 

Eighteen pre-selected velocity sensor/pole configurations are shown in Figure 3-2. 

Each pole had four sensors, measuring velocities either both in the x- and ^-direction, 

only in the x-direction, or only in the ^-direction. The locations of the poles in Figure 3-2 

were selected based on ideal situations, such as having a large number of sensors evenly 

distributed throughout the entire zone (Figure 3-2a), and based on more practical 
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b) 6 12 e) 15 4 

c) 7 8 f) 16 4 

c) 8 8 • f) 17 4 

c) 9 8 f) 18 4 d) 
Figure 3-2. Pole configurations where synthetic velocity data were taken 

limitations on available sensor quantity (Figure 3-2d-f). The airflow solutions resulting 

from the use of these respective configurations provided insight into the relative 

importance of locating sensors close to the diffuser or exhaust and the relative importance 

of sensor measurements from the perimeter versus from the center of the room. When 

utilizing synthetic temperature data to estimate airflow, the temperature in every subzone 

and along all the surfaces of the zone were needed. Thus, only Pole config. #1 (Figure 

3-2a) was tested. 

3.4.2 Optimized sensor locations 

Figure 3-3 shows the optimization process used to determine the optimal quantity 

and location of synthetic velocity data that maximized the indoor airflow estimation 

accuracy. Genetic algorithm (GA) was the optimization method used. All of the subzones 

were candidate locations. GA was employed using the Genetic Algorithm and Direct 

Search Tool in Matlab [106] with the following options: 

Population size: 40 
Elite count (or number of parents): 6 
Crossover fraction: 0.8 
Mutation function: Gaussian 
Mutation scale: 1.5 
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Generations: Infinity 
Time limit: Infinity 
Fitness limit: -Infinity 
Stall generations: 1000 
Stall time limit: Infinity 

Two trials were performed. In Trial 1, for each candidate location, only velocity 

measurements in one direction, either vertical or horizontal, were provided to each 

inverse airflow model as additional known data. In Trial 2, for each candidate location, 

both vertical and horizontal measurements were available. 

The design objective when optimizing the sensor quantity and location was 

estimation accuracy. The first design objective utilized was maximizing skewness. The 

absolute error between the airflow results of each inverse airflow model and CFD at the 

interface between all of the subzones was calculated. Using these values, a histogram or 

error distribution, was created for each zone and pole configuration. The skewness was 

then calculated for each error distribution, defined as: 

where x, is the mean error, x, is the error in each bin, N is the number of bins, and s is the 

sample standard deviation. Seven bins were selected (Table 3-1). The more positive the 

skewness of an error distribution, the more the distribution peaked in the bins of smaller 

error, which is an initial indicator of more accurate airflow estimation when compared to 

3.4.2.1 Design objectives 

(19) 
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Figure 3-3. Using genetic algorithm to optimize the quantity and location of velocity 
data. 

Table 3-1. Summary of bins used in evaluation of estimation accuracy of airflow 
results. 

Bin Range of absolute value of error 
1 error < 0.05 
2 0.05 < error < 0.10 
3 0.10 < error < 0.15 
4 0.15 < error <0.20 
5 0.20 < error < 0.25 
6 0.25 < error < 0.30 
7 error > 0.30 

the CFD airflow results. Given a specific number of sensors, the objective function to be 

minimized was the negative of skewness in Eq. (19), which is also the same as 

maximizing skewness. 
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The second design objective utilized was minimizing the residual sum of squares 

(RSS): 

RSS ^ i y , ~ AxJ (20) 
i 

where y, was the airflow result from each inverse airflow model and fix,) was the CFD 

model result. 

3.5 Results and discussion 

3.5.1 Comparing inverse models 

3.5.1.1 Zone A 

The estimation accuracy of invSVD, with and without considering infiltration 

(invSVDO and invSVDl, respectively), was compared to that of invC for the pole 

configurations shown in Figure 3-2. Table 3-2 summarizes the skewness the airflow error 

distributions resulting from the use of each pole configuration and each inverse model for 

Zone A. The first row (Pole config. #0, base case) is the skewness of the error 

distribution with no additional sensor information provided to the inverse model. The 

invC has the highest skewness and lowest RSS (values of RSS not reported here for 

brevity. They can be found in APPENDIX D.) of the three inverse models when no 

additional sensor information is provided. Table 3-2 shows that in 4 out of the 18 pole 

configurations simulated (7, 9, 15, and 16) in Zone A, using the invSVDO model resulted 

in error distributions with the highest skewness (better estimation accuracy) among the 

three inverse models. In 6 out of the 18 pole configurations simulated (1, 2, 4, 5, 14, and 

17), using the invSVDl model resulted in error distributions with the highest skewness 
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Table 3-2. Summary of skewness of error distributions resulting from use of 
invSVDO, invSVDl, and invC models to inversely estimate airflow for Zone A. 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC highest between between 

skewness invSVD invSVDl 
models and invC 

0 (base case) 0.600 0.646 0.855 invC 7.7% 32.3% 
1 2.645 2.646 2.594 invSVDl <1% 
2 2.641 2.645 2.584 invSVDl <1% 
3 1.763 1.746 1.880 invC <1% 7.7% 
4 2.623 2.623 2.548 invSVD <1% 
5 2.623 2.623 2.501 invSVD <1% 
6 1.137 1.123 1.328 invC <5% 18.3% 
7 1.696 1.616 1.610 invSVDO <5% 
8 0.951 0.998 1.281 invC 5.0% 28.3% 
9 1.488 1.372 1.263 invSVDO 8.5% 

10 1.378 1.396 1.500 invC <5% 7.5% 
11 1.451 1.439 1.839 invC <1% 27.8% 
12 0.804 0.866 0.894 invC 7.7% <5% 
13 1.178 1.767 1.835 invC <1% <5% 
14 1.539 1.713 1.710 invSVDl 11.3% 
15 1.139 1.094 0.723 invSVDO <5% 
16 1.903 1.546 1.072 invSVDO <1% 
17 1.546 1.625 1.531 invSVDl 5.1% 
18 1.072 1.063 1.104 invC <1% <5% 

among the three inverse models. For the remaining pole configurations simulated (3, 6, 8, 

10-13, and 18), using the invC model resulted in error distributions with the highest 

skewness among the three inverse models. 

When using RSS as the indicator of estimation accuracy, none of the pole 

configurations simulated in Zone A using the invSVDO model resulted in the lowest RSS 

(better estimation accuracy) among the three inverse models. In 9 out of the 18 pole 

configurations simulated (1-5, 13-15, and 17), using the invSVDl model resulted in the 

lowest RSS among the three inverse models. For the remaining pole configurations 

simulated (6-12, 16, and 18), using the invC model resulted in the lowest RSS among the 

three inverse models. Except for the invSVDO model, using RSS as the indicator of 
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estimation accuracy resulted in similar results to when skewness was used as the 

indicator of estimation accuracy. 

Among the 8 pole configurations in Zone A where the skewness of the error 

distributions resulting from the use of the invC model were greater than those using the 

invSVDl model, the difference was <5% for 3 of the pole configurations (12, 13, and 18). 

For the remaining 5 pole configurations (3, 6, 8, 10, and 11), plots of the error 

distributions and airflow results from the use of the invSVDl and invC models showed 

little difference. Figure 3-4 shows the error distributions for pole configurations 8 and 11, 

which exhibited the greatest differences between the skewness of the error distributions 

resulting from the use of the invSVDl and invC models. Among the 9 pole 

configurations in Zone A where the RSS resulting from the use of the invC model were 

less than those using the invSVDl model, the difference was <5% for 5 of the pole 

configurations (6, 7, 9-10, and 16). For the remaining 4 pole configurations (8, 17, 18, 

and 24), the difference was <10%. 

Figure 3-4. Error distribution plots for Pole Config. #8 and 11 and 
for invSVDl and invC models (Zone A). 
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3.5.1.2 Zone B 

Table 3-3 summarizes the skewness the airflow error distributions resulting from 

the use of each pole configuration and each inverse model for Zone B. Detailed values of 

RSS not reported here for brevity. They can be found in APPENDIX D.). 

Table 3-3 shows that in 2 out of the 18 pole configurations simulated (7 and 8) in 

Zone B, using the invSVDO model resulted in error distributions with the highest 

skewness (better estimation accuracy) among the three inverse models. In 7 out of the 18 

pole configurations simulated (1, 3, 4, 9, 10, 13, and 15), using the invSVDl model 

resulted in error distributions with the highest skewness among the three inverse models. 

For the remaining pole configurations simulated (2, 5, 6, 11, 12, 14, 16-18), using the 

invC model resulted in error distributions with the highest skewness among the three 

inverse models. 

When using RSS as the indicator of estimation accuracy, 1 of the pole 

configurations simulated (6) in Zone B using the invSVDO model resulted in the lowest 

RSS (better estimation accuracy) among the three inverse models. In 10 out of the 18 

pole configurations simulated (1, 3-4, 9-11, and 15-18), using the invSVDl model 

resulted in the lowest RSS among the three inverse models. For the remaining pole 

configurations simulated (2, 5, 7-8, and 12-14), using the invC model resulted in error 

distributions with the lowest RSS among the three inverse models. For all three inverse 

models, using RSS as the indicator of estimation accuracy resulted in similar results 

to when skewness was used as the indicator of estimation accuracy. 
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Table 3-3. Summary of skewness of error distributions resulting from use of 
invSVDO, invSVDl, and invC models to inversely estimate airflow for Zone B. 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC highest between between 

skewness invSVD invSVDl 
models and invC 

0 (base case) 1.794 1.846 2.088 invC <5% 13.1% 
1 2.615 2.619 2.503 invSVDl <1% 
2 1.842 1.895 2.336 invC <5% 23.3% 
3 2.414 2.414 1.964 invSVDl <1% 
4 2.508 2.524 2.459 invSVDl <1% 
5 1.929 1.897 2.000 invC <5% 5.4% 
6 1.873 1.923 1.982 invC <5% <5% 
7 2.450 2.443 1.331 invSVDO <1% 
8 2.031 2.020 1.738 invSVDO <1% 
9 2.157 2.169 1.980 invSVDl <1% 
10 2.055 2.077 1.977 invSVDl <5% 
11 2.083 2.083 2.087 invC <1% <1% 
12 1.746 1.732 2.228 invC <1% 28.7% 
13 2.061 2.143 1.894 invSVDl <5% 
14 1.564 1.564 1.985 invC <1% 26.9% 
15 2.101 2.118 2.079 invSVDl <1% 
16 2.019 1.964 2.207 invC <5% 12.4% 
17 2.148 2.153 2.320 invC <1% 7.8% 
18 2.132 2.098 2.147 invC <5% 2.3% 

Among the 9 pole configurations in Zone B where the skewness of the error 

distributions resulting from the use of the invC model were greater than those using the 

invSVDl model, the difference was <5% for 2 of the pole configurations (6 and 11). For 

the remaining 7 pole configurations (2, 5, 12, 14, 16-18), plots of the error distributions 

and airflow results from the use of the invSVDl and invC models showed little difference. 

Figure 3-5 shows the error distributions for pole configurations 12 and 14, which 

exhibited the greatest differences between the skewness of the error distributions 

resulting from the use of the invSVDl and invC models. Among the 10 pole 

configurations in Zone B where the RSS resulting from the use of the invC model were 
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Figure 3-5. Error distribution plots for Pole Config. # 12 and 14 and 
for invSVDl and invC models (Zone B). 

less than those using the invSVDl model, the difference was <5% for 1 of the pole 

configurations (12). For the remaining 9 pole configurations (2, 5, 7-8, and 13-14), the 

difference was rather large (15-85%). 

Table 3-4 summarizes the skewness the airflow error distributions resulting from 

the use of each pole configuration and each inverse model for Zone C. Detailed values of 

RSS not reported here for brevity. They can be found in APPENDIX D.). 

Table 3-4 shows that in 5 out of the 18 pole configurations simulated (1, 4, 5, 6, 

and 8) in Zone B, using the invSVDO model resulted in error distributions with the 

highest skewness (better estimation accuracy) among the three inverse models. In 7 out of 

the 18 pole configurations simulated (3, 10, 11, 14, and 16-18), using the invSVDl model 

resulted in error distributions with the highest skewness among the three inverse models. 

For the remaining pole configurations simulated (2, 7, 9, 12, 13, and 15), using the invC 

3.5.1.3 Zone C 
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model resulted in error distributions with the highest skewness among the three inverse 

models. 

When using RSS as the indicator of estimation accuracy, none of the pole 

configurations simulated in Zone C using the invSVDO model resulted in the lowest RSS 

(better estimation accuracy) among the three inverse models. In 14 out of the 18 pole 

configurations simulated (1, 3-9, 12-16, and 18), using the invSVDl model resulted in 

the lowest RSS among the three inverse models. For the remaining pole configurations 

simulated (2, 10-11, and 17), using the invC model resulted in the lowest RSS among the 

three inverse models. Except for the invSVDO model, using RSS as the indicator of 

estimation accuracy resulted in similar results to when skewness was used as the 

indicator of estimation accuracy. 

Table 3-4. Summary of skewness of error distributions resulting from use of 
invSVDO, invSVDl, and invC models to inversely estimate airflow for Zone C. 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC highest between between 

skewness invSVD invSVDl 
models and invC 

0 (base case) 1.705 1.643 1.851 invC <5% 12.7% 
1 2.597 2.597 2.344 invSVDO <1% 
2 2.464 2.476 2.486 invC <1% <1% 
3 2.344 2.361 1.650 invSVDl <1% 
4 2.582 2.582 2.055 invSVDO <1% 
5 2.390 2.381 2.374 invSVDO <1% 
6 2.297 2.192 1.861 invSVDO <5% 
7 1.924 1.946 1.998 invC <5% <5% 
8 1.805 1.794 1.757 invSVDO <1% 
9 1.790 1.829 1.957 invC <5% 7.0% 

10 2.072 2.178 2.155 invSVDl 5.12% 
11 2.178 2.223 2.159 invSVDl <5% 
12 1.718 1.755 1.779 invC <5% <5% 
13 2.057 2.094 2.149 invC <5% <5% 
14 2.044 2.082 2.025 invSVDl <5% 
15 1.819 1.864 1.886 invC <5% <5% 
16 2.208 2.234 1.562 invSVDl <5% 
17 2.129 2.234 1.869 invSVDl <5% 
18 2.179 2.256 1.520 invSVDl <5% 
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Figure 3-6. Error distribution plots for Pole Config. 9 
for invSVDl and invC models (Zone C). 

Among the 6 pole configurations in Zone C where the skewness of the error 

distributions resulting from the use of the invC model were greater than those using the 

invSVDl model, the difference was <5% for 5 of the pole configurations (2, 7, 12, 13, 

and 15). For the remaining pole configuration (9), the plot of the error distributions and 

airflow results from the use of the invSVDl and invC models showed little difference. 

Figure 3-6 shows the error distributions for pole configuration 9, which exhibited the 

greatest differences between the skewness of the error distributions resulting from the use 

of the invSVDl and invC models. Among the 4 pole configurations in Zone C where the 

RSS resulting from the use of the invC model were less than those using the invSVDl 

model, the difference was <10% for 2 of the pole configurations (10 and 17). For the 

remaining 2 pole configurations (2 and 11), the difference was 27% and 13%, 

respectively. 

Based on the airflow estimation results from three simulated zones, it was 

concluded that the invSVD and invC models demonstrated comparable airflow 
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estimation accuracy. Except for three pole configurations (9, 12, and 14), the difference 

between the skewness of the error distributions resulting from the use of the invSVDO 

and invSVDl models were small (<5%) for Zone A. When using RSS as the indicator of 

estimation accuracy, except for pole configurations 1 and 2, the difference between the 

RSS values resulting from the use of the invSVDO and invSVDl models were small 

(<5%) for Zone A. For all of the pole configurations, the difference between the 

skewness of the error distributions resulting from the use of the invSVDO and invSVDl 

models were small (<5%) for Zones B and C. When using RSS as the indicator of 

estimation accuracy, except for pole configuration 6, the difference between the RSS 

values resulting from the use of the invSVDO and invSVDl models were small (<5%) for 

Zone B. When using RSS as the indicator of estimation accuracy, except for pole 

configuration 6, the difference between the RSS values resulting from the use of the 

invSVDO and invSVDl models were small (<5%) for Zone B. When using RSS as the 

indicator of estimation accuracy, except for pole configurations 3 and 6, the difference 

between the RSS values resulting from the use of the invSVDO and invSVDl models 

were small (<5%) for Zone C. Thus, it was concluded that including infiltration as a 

known boundary condition in the invSVD model generally neither degraded nor 

improved its estimation accuracy for the pole configurations tested in the simulated 

zones. 

3.5.2 Best sensor locations (from pre-selected configurations) 

Since it was concluded in the previous section that there was little difference 

between the airflow estimated using the three inverse models, subsequent discussions will 

focus on the airflow results using the invSVDl model. From Table 3-2, the five pole 
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configurations with the highest skewness values were Pole Config. #1, 2, 5, 4 and 16 for 

Zone A. Pole Config. #1, 2, 5, and 4 were also among the configurations with the lowest 

RSS values. 

Pole Config. #1 and 2 are in the same "family", i.e. they have the same number of 

poles and only differ in the direction velocity was measured. Both configurations placed 

sensors in all subzones. The difference between them was that Pole Config. #1 measured 

velocity in both the x- and ^-directions, while Pole Config. #2 only measured velocity in 

the ^-direction. Pole Config. #4 and 5 are also in the same "family". Both configurations 

placed sensors in the subzones located on the perimeter of the zone. Again, the only 

difference between them was that Pole Config. #4 measured velocity in both directions, 

while Pole Config. #5 only measured velocity in the ^-direction. Pole Config. #16 placed 

two poles near the diffuser and two poles near the exhaust, measuring velocity in both 

directions. 

Even though there were more sensor data available for Pole Config. #1 than for 

Pole Config. #5, the difference between the skewness values was <1%. In contrast, the 

RSS value for Pole Config. #1 was much less than for Pole Config. #5. Nevertheless, 

Figure 3-7 shows that using Pole Config. #5 (sensors around perimeter of zone), the 

invSVDl model captures the general airflow pattern calculated by CFD just as well as 

using Pole Config. #1 (sensors in every subzone). Thus, it was concluded that sensors 

placed around the perimeter subzones of Zone A provided sufficient data to 

estimate indoor airflow as accurately as placing sensors in every subzone. This offers 

a practical and cost effective simplification in both experimental set ups and field tests 
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for future work in inverse airflow modeling. Sensors are more readily installed on walls 

than in the center of a room. 

Not surprisingly, like for Zone A, the best pole configuration was 1 (sensors in 

every subzone measuring velocity in both directions) for Zones B and C when using 

skewness as the indicator of estimation accuracy. However, the second best pole 

configuration was not 2, but 4 for both Zones B and C. Using Pole Config. #4, like Pole 

Config. #5, the invSVDl model captured the general airflow pattern calculated by CFD 

just as well as using Pole Config. #1 (sensors in every subzone) (Figure 3-8 for Zone B 

and Figure 3-9 for Zone C). Using RSS as the indicator of estimation accuracy, Pole 

Config. #8 was the best configuration for Zone B. Pole Config. #8 placed sensors in the 

center of the room, which was also where the diffuser was located in Zone B. 

Nevertheless, the pole configuration with the second best RSS in Zone B was Pole 

Config. #5 (as was found when using skewness to select the best configuration), and its 

value was <5% greater than for Pole Config. #8. Using RSS as the indicator of estimation 

accuracy, Pole Config. #4 was the best configuration for Zone C. Thus, using either 

skewness or RSS values to evaluate estimation accuracy, similar pole configurations 

were selected as the best ones. 

When using skewness as the indicator of estimation accuracy, the next best three 

pole configurations for Zone B were 7, 3, and 9. And the next best three pole 

configurations for Zone C were 2, 5, and 3. Pole Config. #7 and 9 are in the same 

"family". Both configurations placed sensors the center of the zone. These were the next 

best pole configurations for Zone B since the inlet in Zone B was simulated closer to the 

center of the zone. The inlet in Zone A was simulated in the corner. The next best pole 
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configurations for Zone C were the same families as the top two configurations, like for 

Zone A, since the inlet location was the same. When using RSS as the indicator of 

estimation accuracy, other low-RSS valued pole configurations for Zone B were 13 and 

14, and 16 for Zone C. Pole Configs. #13 and 14 placed sensors along the diagonal of the 

test space, from the inlet to the outlet. Pole Config. #16 placed sensors near the inlet in 

Zone C. Thus, it was concluded that measurements below the inlet could improve 

the airflow estimation accuracy of the inverse models tested for all simulated zones. 
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Figure 3-7. Flow pattern through diffuser in Zone A for invSVDl, Pole Config. #1 
and 5, and for the CFD results. 
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Figure 3-8. Flow pattern through diffuser in Zone B for invSVDl, Pole Config. #1 
and 4, and for the CFD results. 
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Figure 3-9. Flow pattern through diffuser in Zone C for invSVDl, Pole Config. #1 
and 4, and for the CFD results. 

3.5.3 Best sensor locations (from optimization) 

This section discusses the optimization study using the invSVDl model. This 

inverse model was chosen for the optimization process since (1) the skewness of the error 

distributions resulting from the use of the invSVDl did not greatly differ from those 

using the invSVDO and invC models and (2) either of the invSVD models was more 

easily incorporated into the optimization process than invC. 

Figure 3-10 shows the skewness of the error distributions resulting from the 

incorporation of an increasing number of sensors for Zone A. In Trial 1, for each 

candidate location, only velocity measurements in one direction, either vertical or 

horizontal, were provided to each inverse airflow model as additional known data. In 

Trial 2, for each candidate location, both vertical and horizontal measurements were 

available. For both Trials 1 and 2, as the number of sensors increased, the skewness 

increased as well, which was to be expected. The difference between the skewness values 

for Trials 1 and 2 were never greater than 5% for any sensor quantity. Thus, it could be 

concluded that the extra measurement (and thus the extra sensor in an experimental 
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setup) would not greatly improve the estimation accuracy of the invSVDl model. 

And, for Zones B and C, only Trial 1 was conducted. This was also found when using 

RSS as the indicator of estimation accuracy. 

Figure 3-10 also shows that as the number of sensors increased, the skewness 

stabilized. In contrast, as the number of sensors increased, the RSS values linearly 

decreased. For Trial 1, there is <5% improvement in skewness above nine sensors. The 

reason for this is with a limited number of sensors, the optimization process found 

locations that were more critical to the improvement of skewness. As the number of 

available sensors was increased, the additional measurements only provided marginal 

improvement to skewness. Knowing the optimal quantity of sensors for a specific test 

room necessary for acceptable inverse airflow estimation is important in most situations 

where sensor quantity is limited. 

It was shown in Sec. 3.5.2 that if sensors were limited to the perimeter of the zone, 

the major circulation patterns predicted by CFD were well-captured (Figure 3-7). This 

was demonstrated during the optimization process as well. For optimal sensor 

configurations up to and including nine sensors, the optimization process selected a 

majority of the sensors (91%) to be located on the walls for Zone A when using skewness 

as the indicator of estimation accuracy. This was also found when using RSS as the 

indicator of estimation accuracy. It was for this reason that the difference in skewness 

for Trials 1 and 2 were never greater than 5%. Due to the subdivision of each zone in this 

study, at least one of the control faces of a subzone on a wall coincided with the wall of 

the zone. Thus, if a sensor was selected to be located on a wall (as was the case 91% of 

the time), the additional velocity measurements of Trial 2 oftentimes had values of zero 
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(no flow across walls), providing no additional information to improve estimation 

accuracy. 

When using skewness as the indicator of estimation accuracy, 40% of the sensors 

that were found to be located on the walls were located in the z-plane closest to the outlet 

(z=4). The z-planes with the next highest percentage of sensors were z=l (under the inlet) 

and z=3 (adjacent to z=4). For sensor configurations with ten to 18 sensors, the locations 

were more evenly distributed between the four z-planes with the majority still located in 

z=4. (18 sensors were tested since it was double the optimal quantity of sensors) When 

using RSS as the indicator of estimation accuracy, 55% of the sensors that were found to 

be located on the walls were located in the z-plane closest to the inlet (z=l). The z-planes 

with the next highest percentage of sensors were z=2 (adjacent to z=l) and then z=3 and 

z=4 with the same percentage. For sensor configurations with ten to 18 sensors, again, 

the locations were more evenly distributed between the four z-planes with the majority 

still located in z=\. 

The majority of sensors were selected to measure velocity in the vertical direction 

using either skewness or RSS as the indicator of estimation accuracy. This is due to 

the fact that the inlet is delivering and the outlet is exhausting air vertically through Zone 

A. 

As with Zone A, as the number of sensors increased, the skewness increased as 

well for Zones B and C when using skewness as the indicator of estimation accuracy. As 

the number of sensors increased, the RSS values linearly decreased. As the number of 

sensors increased, the skewness stabilized. However, the quantity of sensors for which 
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Figure 3-10. Skewness values for Trials 1 and 2 with various numbers of sensors in 
Zone A. 

Table 3-5. Mean age of air for test cases in Chapter 3 
Test 
Zone 

Local mean age of air (LMA) (sec) 
Mean±Standard Deviation 

A 26±10 
B 55±18 
C 58±23 

this occurred was different for each zone. For Zone A, it was nine sensors. For both 

Zones B and C, it was four sensors. The mean age of air in Zones A, B, and C are 

reported in Table 3-5 as calculated using CFD data. See Sec. 2.10.4 on how mean age of 

air was calculated. Since the mean age of air for Zones B and C were similar, the optimal 

number of sensors for these zones was also similar when using skewness as the indicator 

of estimation accuracy. 

In Zone B, up to four sensors, the majority of sensors were selected to be located 

in the z-plane closest to the outlet (z=4). The remaining sensors were located in the z-

plane closest to the inlet (z=2). For sensor configurations with five to eight sensors, the 
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majority of sensors were selected to be located in the z-plane closest to the inlet ( z = 2 ) . (8 

sensors were tested since it was double the optimal quantity of sensors) When using RSS 

as the indicator of estimation accuracy, all of the sensors that were found to be located on 

the walls were located in the z-plane closest to the inlet (z=l). For sensor configurations 

with five to eight sensors, the majority were still located in z=l. 

As with Zone A, most of the sensors were selected to be placed on the walls and 

measure velocity in the vertical direction using either skewness or RSS as the indicator 

of estimation accuracy. These same results were found for Zone C as well. 

Since the outlet in Zones A and B were adjacent to a wall, the majority of the 

sensors were shown to be placed in the same z-plane as the outlet (z=4) when using 

skewness as the indicator of estimation accuracy. However, in Zone C, where the outlet 

was placed off the wall in z=3, the majority of the sensors were shown to be placed in the 

z-plane adjacent to the outlet (z=4, a wall) when using skewness as the indicator of 

estimation accuracy. Thus, it was concluded that, up to the optimal number of sensors for 

each respective test room, the majority of sensors will be placed on the wall closest to the 

outlet no matter the location of the inlet when using skewness as the indicator of 

estimation accuracy. When using RSS as the indicator of estimation accuracy, the 

majority of sensors will be placed on the wall closest to the inlet. 

Though using skewness and RSS as the indicator of estimation accuracy 

resulted in different locations for the placement of sensors (i.e., using skewness, 

sensors should be placed near the exhaust; using RSS, sensor should be placed near 

the diffuser), it was found that the majority of sensors should be placed on the walls 

and close to a flow element (i.e., diffuser or exhaust). Further, the majority of the 



www.manaraa.com

129 

sensors should measure velocity in direction of the bulk airflow, whether using 

skewness or RSS as the indicator of estimation accuracy. 

3.5.4 Using synthetic temperature data 

A value o f 4 W/m2-K for hkwas initally assumed for all subzone surfaces [111]. 

The temperature of the incoming air and that of the surfaces was known. Therefore, the 

only unknonwn in Eq. (18) was indoor airflow, which can be inversely solved for using 

invSVD. Given the sensor locations in Figure 3-2a, it was found that the skewness of the 

error distribution (0.708) was no better than the case when the same number of velocity 

data was included in the invSVDl model (2.646). Therefore, it was not recommended 

that temperature sensors be used to inversely solve for indoor airflow since the same 

number of velocity sensors resulted in an estimation accuracy that was better by 

about two-fold. Other values for hk were tested as well, ranging from 0.5 to 100 W/m2-K. 

It was found that the difference in skewness value was <1% up to a value of 8 W/m2-K. 

Therefore, it was concluded that any reasonable value of hk can be assumed when 

using invSVD to estimate indoor airflow from temperature measurements. 

3.5.5 Limitations of invSVD model 

SVD is a method to solve an underdetermined set of linear equations. The 

invSVD model utilized a set of linear mass balance equations to inversely solve for 

indoor airflow. Any airflow that is better represented by a nonlinear relationship, such as 

infiltration, could only be included in the invSVD model if the relationship were first 

linearized. However, this is the solution method taken by traditional multizone models 

such as CONTAM. If one wanted to estimate infiltration, a multizone model simulation 

would be needed. If infiltration could be neglected, the invSVD model may be employed 
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to solve for indoor airflow, as was demonstrated by the studies on the three test zones. A 

research question remains as to when infiltration can be neglected. 

3.6 Conclusions 

Inverse modeling techniques provide opportunities to take advantage of fast-

developments in sensing and communicating technologies, using sensor data for efficient 

and accurate estimation and prediction of indoor airflow and contaminant distribution. 

However, for the capabilities of inverse models to reach their full potential, proper 

inverse model structure and sensor system design (such as quantity and type) need to be 

examined. Here, (1) the feasibility of using SVD as an inverse modeling approach was 

studied, where indoor airflow was represented as a linear system, (2) the performances of 

inverse SVD models and inverse CONTAM model, where indoor airflow is represented 

as a non-linear system, were compared, (3) the need for including infiltration in these 

inverse models was evaluated, and (4) optimal sensor system design to best provide 

sensor measurements for inverse models was examined. It was found that for all zones 

simulated: 

(1) The inverse SVD models (invSVDO and invSVDl) performed comparably to the 

inverse CONTAM model when provided with velocity data; 

(2) Infiltration data did not affect the performance of inSVD greatly; 

(3) Using data from sensors placed along the perimeter of the zone, the airflow 

estimated by the invSVDl model captured the same general airflow pattern as 

predicted by a CFD model; 

(4) Using genetic algorithm to optimize the estimation accuracy, using either 

skewness or RSS as the objective function, of the invSVDl model, most sensors 
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should be placed on the wall closest to the a flow element and measure velocity in 

the vertical direction. This was also the bulk direction of airflow since the inlet 

and outlets were located in the ceiling; 

(5) When using temperature data for estimating indoor airflow, it was found that the 

airflow estimation was better than the case when the same amount of velocity data 

was provided to the invSVDl. Since using temperature data to estimate indoor 

airflow required temperature readings from every subzone, it was not 

recommended that temperature sensors be used to inversely solve for indoor 

airflow since the same number of velocity sensors resulted in an estimation 

accuracy that was better by about two-fold. A similar conclusion could be drawn 

for other types of sensors, such as contaminant. 

Hypothesis #2 was: there exists an inverse airflow model that is able to efficiently 

and accurately estimate indoor airflow patterns and contaminant transport utilizing 

measurements from an indoor air sensor system. In this work, it could be concluded that 

the invSVD model performed comparably to the invC model. The invSVD model offers 

several advantages to the invC model. 

(1) It is easier to set up, only requiring the size of the subzones, number/layout of 

subzones, and inlet conditions; 

(2) The system of equations that invSVD uses to solve for indoor airflow are linear, 

and thus, are easily incorporated into ventilation control systems than nonlinear 

systems, which invC utilizes; 

The second advantage of the invSVD model is also its limitation. Phenomena 

such as infiltration and exfiltration are traditionally solved for in airflow models using 
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nonlinear pressure-flow relationships. Because nonlinear relationships cannot be 

incorporated into invSVDl without linearization, which can introduce computational 

error, these nonlinear phenomena cannot be accounted for. In this work, infiltration, when 

included in the invSVD model, was assigned a constant value. 

It is for these reasons that the invSVD model was not extended to Part 3 of this 

research, which is the estimation of indoor airflow for an entire building. Nevertheless, 

the conclusions on velocity sensor placement in this work can be beneficial for 

simplifying and maximizing the effectiveness of indoor airflow experiments and 

measurements. The resulting airflow estimation would be useful for evaluating indoor air 

quality and could also provide an estimate of contaminant transport. 

Portions of this work were published in conference proceedings - Indoor Air 2008 

and ANCRiSST. The full publications can be found in APPENDIX C. Unpublished 

portions have been submitted for publication in Building and Environment. 

3.7 Future work 

The conclusions drawn from the work in this chapter are beneficial for 

simplifying and maximizing the effectiveness of indoor airflow experiments and 

measurements. Nevertheless, the work was limited in the amount of variation between 

test cases. Only three diffuser and exhaust layouts were tested. Therefore, additional 

work would include testing whether or not the sensor placement guidelines for the zones 

tested in this work can be extended to other diffuser/exhaust layouts (such as wall-

mounted). The airflow estimated from the invSVD model should be further validated 

against real sensor data. One could compare airflow and contaminant measurements. 
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3.8 Plans for publication 

Unpublished portions of this work has been submitted to Building and 

Environment, which has an impact factor of 1.192. Another possible publication 

Journal of Environmental Monitoring, which has an impact factor of 2.0. 
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4. CHAPTER 4: TESTING HYPOTHESIS #3 -
DEVELOPING AND UTILIZING INVERSE MODEL 

FOR WHOLE BUILDING 

As discussed in the Sec. 1.4, determining the airflow pattern throughout a whole 

building is useful for predicting contaminant distribution, determining building envelope 

airtightness, pressure distribution within a building, for decontamination, building 

commissioning, and retrofitting. The current methods for determining a building airflow 

network and the proposed framework for developing a building airflow network inverse 

model are discussed below and shown in Figure 4-2. 

4.1 Current methods and limitations for determining a building airflow network 

There are currently two methods for determining the airflow pattern within a 

building, which will now be referred to as the building airflow network. The first is using 

a forward airflow model (see Sec. 1.3.1) and the second is by specialized experiments, 

such as fan pressurization and tracer gas tests. Forward airflow models require detailed 

information about a building in order to simulate airflow patterns. Depending on the 

forward airflow model, they require time and sometimes specialized knowledge in order 

to obtain an accurate result (Sec. 1.3.1.1 to 1.3.1.3). 

Air exchange is the exchange of outdoor air and the air inside a building. It can be 

intentional or unintentional. Outdoor air is intentionally delivered to a building through 

the ventilation system in order to maintain IAQ. Outdoor air is unintentionally delivered 

to a building (or indoor air is unintentionally leaving a building) through the openings in 

the building envelope or other leakage paths. Fan pressurization tests determine the 

airtightness of these leakage paths. 



www.manaraa.com

135 

A fan pressurization test can be used to determine the parameters K and n in the 

following relationship: 

The volume of air supplied by a fan, Q, is recorded along with the indoor-outdoor 

pressure difference, AP, generated by Q (Figure 4-1). The parameters K and n are 

characteristic of the building envelope and do not change when AP changes. Thus, 

theoretically for any other AP measured, the airflow rate {infiltration) through the 

building envelope and other leakage paths can be determined. 

ASTM Standard E779 specifies test conditions for fan pressurization (or blower-

door) tests. The standard is intended for single-zone buildings or multi-zone buildings 

that can be considered a single-zone [112]. Canadian Standard CGSB149.15 specifies test 

conditions for a fan pressurization test using a building's own air handling system [113]. 

It was applied to commercial buildings with limitations [114]. Bahnfleth et al. [115] 

Q = K(AP)" (21) 

l.s 

Outside measured 
rang« 
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to 30 
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30 

Figure 4-1. Example of blower-door test results. 
Source: [116]. 
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compared these two test standards in two multi-zone, multi-story buildings. The 

researchers found that neither method was easy to implement. Wind and stack effects 

were difficult to control in multi-story buildings. Further, the sealing of leakage paths 

between floors, such as shaft penetrations, was also challenging. The results of the fan 

pressurization tests may be inaccurate in this case. Therefore, a method is needed to 

accurately determine the building envelope airtightness of multi-zone buildings, in 

order to be useful in determining infiltration. 

A tracer gas test is used to determine infiltration rates under specific test 

conditions, e.g., outdoor weather condition, ventilation system operation, etc. A known 

amount of a tracer, or substance that does not affect indoor airflow, is released and 

measured in a zone (or multiple zones). Knowing the amount of tracer released and how 

its concentration inside a zone changes with time, the air exchange rate can be calculated. 

Tracer gas tests can be categorized in many ways: single-zone or multi-zone methods, 

injection technique, and sampling technique. McWilliams [117] provided a detailed 

summary of current tracer gas test techniques. 

ASTM Standard E741 specifies test conditions for tracer gas tests, as well as how 

to calculate air exchange rates [118]. Traditional tracer gas tests require specialized 

equipment to inject and sample specialized tracers, such as SF6 or NO2. They are mostly 

performed for single-zone or small multi-zone buildings. Studies in the literature have 

also used CO2 as a tracer for single zones [41, 119-124]. Most of these tests determined 

overall air exchange rates with the outdoors and not the specific airflow rate through the 

building envelope or between zones (interzonal airflow). In order to estimate interzonal 
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airflow rates, either multiple tracers were needed [40] or multiple tracer tests needed to 

be performed [125]. 

Results from tracer gas tests are limited because their results are obtained under 

specific indoor and outdoor test conditions. If any of the test conditions changes 

significantly, the tracer test would need to be repeated in order to obtain a new infiltration 

(air exchange) rate. Also, the need for special injection and sampling equipment limits 

the use of tracer gas tests for continuous or regular measuring of infiltration rates. Lastly, 

to determine interzonal airflow rates, one would need multiple tracers or repeat a single 

tracer test as many times as there are zones. Therefore, a method is needed to 

accurately determine the building infiltration rate, especially a method to 

continuously determine the infiltration rate under changing indoor and outdoor 

conditions. 

These specialized tests are used to determine building air exchange rates, and not 

the relatively more detailed airflow patterns that are simulated by forward airflow models. 

Thus, an effective method for determining interzonal airflow rates is also needed. 

4.2 Framework for developing a building airflow network inverse model 

Figure 4-2 shows the information needed to completely describe a building 

airflow network, as defined in this research. They are: building envelope leakage, 

building air exchange rates, interzonal airflow rates, and ventilation system operation. As 

discussed in the previous section, this information can be obtained through simulation or 

measurements. However, the major shortcomings of the current methods for determining 

a building airflow network is that they are neither fast nor simple to perform, they 
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are not standardized for multi-zone buildings, and they cannot give a real-time estimate 

of a building airflow network. A real-time estimate is needed since changes are always 

occurring in ventilation operation, weather conditions, etc. Even building envelope 

airtightness, which is characteristic of the envelope construction, will change over time as 

a building ages. These shortcomings can be potentially overcome by the development and 

utilization of the building airflow network inverse model proposed in this research. 

The proposed building airflow network inverse model utilizes information that is 

easily obtained from commonly installed sensor systems, e.g. CO2 measurements and 

occupancy. The use of pressure measurements was considered. They were not included in 

the proposed building airflow network inverse model because pressure sensors are 

sensitive to error when AP is low, e.g., under normal operating/airflow conditions inside 

a building [33], 

The building airflow network inverse model developed in this research was able 

to determine all the information that completely describes a building airflow network, as 

defined in this research. Specifically, it was able to estimate airflow rates through the 

building envelope, interzonal airflow rates, and exhaust rates from zones. The building 

airflow network inverse model developed in this research was also easily implemented 

for a multi-zone building and provided a quick estimate of the building airflow network. 

The building airflow network inverse model in this research was tested using a 

single set of ventilation system operation, outdoor weather conditions, and occupancy 

information. Since changes are always occurring in ventilation operation, weather 

conditions, etc., real-time estimates of the changing building airflow network is 

ultimately needed. 
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Figure 4-2 shows that future work can utilize the building airflow network inverse 

model proposed in this research, along with a black-box model (or pattern recognition 

technique, etc.), to update the building airflow network. 

The proposed building airflow network inverse model could provide multiple 

"point" estimates of a building airflow network. Other information, such as ventilation 

operation, outdoor weather conditions, and pressure measurements, could be collected 

each time a point estimate was made. All of this information would then used to "train" a 

black-box model to draw relationships between each point estimate and the information 

collected. Then, in the future, as ventilation operation, outdoor weather conditions, and 

pressure measurements change, the black-box model could easily provide an updated 

building airflow network. Important to note as well is the potential to use a well-

developed black-box model to estimate the building airflow network when non-

traditional ventilation systems, such as natural ventilation and hybrid systems, are in use. 

Non-traditional ventilation systems are more greatly affected by continuously-changing 

and uncertain outdoor weather conditions. Thus, they are more difficult to correctly 

mathematically model than traditional ventilation systems. 

The updated building airflow network would have many applications. Some are 

shown in Figure 4-2. They are: for sensor system design, providing real-time IAQ 

evaluation, quickly and easily determining K and n (which would traditionally require a 

fan pressurization test), and others. 

4.3 Chapter 4 outline 

The following section describes the proposed building airflow network inverse 

model. Sec. 4.5 describes the study methods to test the proposed building airflow network 
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inverse model. Sec. 4.6 describes the test cases used to test the proposed building airflow 

network inverse model and the results. Conclusions are discussed in Sec. 4.7 and future 

work in Sec. 4.8. 

4.4 Proposed building airflow network inverse model 

The building airflow network inverse model presented here determines the airflow 

pattern within a whole building using measurements from a distributed sensor network. 

Two methods were used to mathematically represent the building airflow network: 

deterministic and stochastic. 

4.4.1 Deterministic inverse model 

The building airflow network was represented by the general contaminant mass 

balance equation: 

= H Q p C J - Z Q , c . + M - s (22) 

j*i JH 

where V, is the volume of each zone, QJt is the airflow rate from zone j to zone i (m3/s), 

Qij is the airflow rate from zone i to zone j (m3/s), C) is the CO2 concentration in zone j 

(kg/m3), C, is the CO2 concentration in zone / (kg/m3), M, is the number of occupants in a 

zone, and S is the CO2 generation rate (kg/s) for each occupant. S was assumed to be the 

same for every occupant. It was assumed that the occupants were the only source of CO2 

in addition to the ambient (outdoor) CO2 concentration. Other possible sources of CO2 

would be combustion appliances that burn fuel for heating and cooking, such as stoves, 

space heaters, and furnaces. However, these were not present in this research. It was also 

assumed that no CO2 sinks were present. Lastly, it was assumed that each airflow rate, Q, 

remained constant. 
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The use of CO2 was advantageous because it is a naturally present tracer. CO2 

sensors are also more readily available and relatively inexpensive compared to the 

equipment needed to measure a traditional tracer gas such as SF6. 

For N zones, the system of steady-state contaminant mass balance equations was: 

QC = - G (23) 

where Q is the parameter matrix to be estimated (the unknown building airflow network). 

C is the concentration matrix representing CO2 measurements in each of the N zones, the 

supply concentration, C5, and the ambient concentration, Co- G is the source matrix 

representing the total source of CO2 in each of the N zones. Equation (23) was expanded 

as: 

SYFIW 02-1 0AM C2 

01-2 Qn-2 
= -

G2 

01-TF Q2-n •• g n 

(24) 

where G, = M,-S, which is the number of occupants in each zone multiplied by the rate at 

which the occupant generated CO2. 

For a transient system, the time change of C, in Eq. (22) was represented using a 

first-order backward approximation. Thus, Eq. (22) was rewritten as: 

^ " c - M l + c ' ( / ) = 1 ) - X a , c, M ) + G , -1) (25) At 1*> 

where t is the current time step, t-1 is the previous time step, and At is the time between 

time steps (sec). A higher-order approximation was also tested in this research. It was 
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found that a higher-order approximation introduced more noise into the calculation of 

C(0. 

An analytical method to solve for C(/) also could have been used. In [126], the 

researchers utilized eigenvalues. This method was also employed by [40]. However, the 

researchers reported that as the number of zones increased (and thus also the number of 

unknowns in Q), the eigenvalue method would be mathematically unstable. Therefore, a 

numerical approach was utilized for the building airflow network inverse model proposed 

in this research so that the framework and results could be extended to buildings of any 

size. 

For N zones, the system of transient contaminant mass balance equations was: 

C(t) = [QC(f - 1 ) + G(f - 1 ) ] ^ + C(f - 1 ) (26) 

which was expanded as: 

C, 
C, 

cK 

1 
0 0 

Vx 

0 
1 

0 
K 

0 0 

0 

[ - i a , 0 2 - 1 • qn-1 

" a " 

c 2 

0 qx-2 qn-2 

c n 

+ 

T [ a . * q2-n • - i i j q n - j _ c s 

v n _ c o . 1-1 

"A" 
G2 

•A t + 
C2 

P*. l-l. A. J'-1 (27) 

where the "A" represented the C0 2 concentration calculated using the building airflow 

network estimated by the building airflow network inverse model. The solution of Eq. 
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(27) was initiated knowing C,(f=0) for / = 1.. .N. The quantities C s (C02 concentration 

from supply diffusers) and Co (outdoor CO2 concentration, were known. 

4.4.2 Stochastic inverse model 

Many of the terms in Eq. (22) are inherently random (or uncertain), or can be 

described in a statistical (probabilistic) sense. There are uncertainties in airflow 

measurements, Q, such as the airflow rate through an open window or how an occupant 

moving past an open doorway affects the airflow rate. There are uncertainties in 

contaminant measurements, C, due to sensor errors. There are also uncertainties in C0 2 

generation rates, G. Even if the number of occupants in a space can be accurately 

determined, the rate at which C0 2 is generated will vary from occupant to occupant 

depending on physical factors such as gender, activity level, and metabolic rate. 

In addition to the uncertainties in Q, C, and G, there is also variability in the 

system, which can be represented by a stochastic model. Variability includes those that 

factors that affect indoor airflow and thus contaminant distribution in Eq. (22). Examples 

include occupant movement, furniture being moved, and door openings and closings. 

Therefore, a stochastic model was used to represent the building airflow network 

in this research. A stochastic term was added to Eq. (22) to account for CO2 sensor error 

and variability in the system only. Stochastic terms can also be added to account for 

uncertainty in other terms, like Q and G. This is saved for future work. 

A stochastic differential equation (SDE) is one in which some of the coefficients 

of a deterministic differential equation are random [127]. Consider a simple population 

growth model: 

^ - = a{f)N{t\ N{0) = No (28) 
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where N(t) is the size of the population at time t, and a(l) is the relative rate of growth at 

time t. If a(t) is random, then: 

a(t) = r(t)+" noise" (29) 

and 

— = [ K ' H " n o i s e " M 0 (30) 
d t 

The function r(t) is assumed to be known and not random. More generally: 

= f ( t , X ) + g(t, X}" noise" (31) 

at 

where/and g are given functions. The "noise" term is represented as Win the literature 

and is a white noise process. The solution of Eq. (31) can be solved using either Ito or 

Stratonovich integrals. The reader is directed to [127] for a detailed explanation of the 

two methods. In this research, Eq. (31) was solved using the Ito integral method, which 

has been used in studies of other stochastic engineering applications [128-129]. The Ito 

stochastic differential form ofEq. (31) is: 

dX = f ( t , X)dt + g(t, X)d W (32) 

where/ is the deterministic drift coefficient and g is the continuous random diffusion 

coefficient. The simplest discrete approximation of Eq. (32) is the Euler-Maruyama (EM) 

approximation [130] and is the one employed in this research: 

= + f{Xn_, )Av, + g{Xn_x (33) 

The random variables AW».i are independent, normally distributed random 

variables with mean 0 and variance Atn. This scheme has a "strong" order of accuracy of 

7=0.5. The "strong" convergence criterion is merely how good the approximation (Xn) is 

to the exact solution (7„) (see [130] for a formal description of the strong convergence 



www.manaraa.com

146 

criterion as well as the weak convergence criterion). For this research, the CO2 

measurements were subject to sensor error. Eq. (26) was rewritten in Ito stochastic 

differential form as: 

where C was replaced by C+CoW, and a is the sensor error (%) of each sensor. The EM 

approximation was thus: 

In addition to the mass balance equations just presented, additional relationships 

were established: 

(1) All values of Q (the unknown building airflow network) must be non-negative. 

(2) The total airflow rate leaving a zone must equal to the total airflow rate entering a 

zone. This was applied to all physical zones as well as to the "ventilation" and 

"outdoors" zones. The "ventilation" zone referred to the air entering the 

ventilation system via the OA intake and return vents in each physical zone. It 

also referred to the air leaving the ventilation system via the EA exhaust vent and 

supply diffusers in each physical zone. The "outdoors" zone referred to air 

entering the outdoors via the EA exhaust vent and any exfiltration from each 

physical zone. It also referred to the air leaving the outdoors via the OA intake 

and any infiltration to each physical zone. 

(34) 

(35) 

4.4.3 Additional relationships 
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(3) The supply airflow rates into each zone were known. This information can often 

be obtained by on-site measuring or from sensors used to control the ventilation 

system. 

(4) Other known conditions were: total outdoor air supplied to the building through 

the ventilation system; and total air exhausted from the building by the ventilation 

system. 

(5) Flow between non-adjacent zones was zero. 

4.4.4 Summary of equations 

Deterministic, steady-state inverse model: Q C = - G (23) 

Deterministic, transient inverse model: C(/) = [qc(t -1) + G(t -1)]-^ + C(t -1) (26) 

Stochastic, transient inverse model: 

C { t ) = 1 ( q c ( * - 1 ) + G ( f - + 1 ( o c ( f - 1 ) ) c t A W ( 3 5 ) 

Additional relationships: 

(1) Q > 0 (36) 

(2) Z Q u =HQj> ( 3 7 ) 

j*i ]*i 

(3) ?̂supplyzonei = fis, = ^ W n for i = 1 ...N (38) 

(4) gOA = known, QEA = known (39) 

(5) If zone i non-adjacent to zone j, then QfJ = Qp = o (40) 
Thus, the unknown airflow rates in the building airflow network were the 

interzonal airflow rates, the infiltration (or exfiltration) rates, and the return airflow rates 

from each physical zone. These were the unknown parameters that need to be estimated. 
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The following section describes the proposed parameter estimation techniques for the 

proposed building airflow network inverse model. 

4.4.5 Solving the mathematical models (parameter estimation) 

This section presents the parameter estimation techniques used in the building 

airflow network inverse model to determine the unknown airflow rates. The techniques 

tested were: linear least squares (Sec. 4.4.5.1), recursive least squares (Sec. 4.4.5.2), and 

nonlinear parameter optimization (Sec. 4.4.5.3 and 4.4.5.4). Nonlinear parameter 

optimization for the deterministic model is described in Sec. 4.4.5.3 and for the stochastic 

model in Sec. 4.4.5.4. 

4.4.5.1 Linear least squares (LSQ model) 

Linear least squares (now referred to as the LSQ model) is a popular method for 

parameter estimation of linear systems. The method minimizes the squared distances 

between an observed (actual) value and one estimated by the method. For the 

deterministic steady-state system, the Matlab [131] function LSQLIN was used to 

estimate Q from Eq. (23) given C and G. For the deterministic transient system, the 

function LSQLIN was used to estimate Q from Eq. (26) given C,(/=0) for / = 1.. .TV" and 

G (t). 

4.4.5.2 Recursive least squares (RLS model) 

Recursive least squares (now referred to as the RLS model) offers an advantage 

over the LSQ model, especially when data is available in a time-series. Thus, it was 

applied to the deterministic transient system. Its recursive nature eliminates the need for 
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matrix inversion, which saves computational time. It is arranged such that the least 

squares estimate from time t-1 is used to obtain estimates for time t. 

The general form a linear system is: 

>{I) = 9IO')0I + ( P2(' ) 0 2 + - + CP„(0E„ = ( P R 0 (41) 

where y(i) is the observed variable, 0j are the parameters of the model to be determined, 

and (pi are the known functions. In this research, (pT was represented by C,(M) for /= 1.. .N, 

and 9 was was represented by Q. The recursive equations for solving 9 (or Q) were [132]: 

0(f) = 0(f - 1 ) + K ( t % , { t ) - cpr (f )§(f -1)) ( 4 2 ) 

Kit) = P(t - l > p ( ^ + (Pr (t)p{t -1)9(0)"' (43) 

Jp(0 = J P ( f - l ) ( / - ^ > P r ( 0 ) (44) 

and were coded into Matlab (APPENDIX A). The recursive algorithm was initiated at 

time t=0 with an initial guess of the parameters, Q{t = 0) , and a sufficiently large value 

for P(t= 0) to avoid computational difficulty [132]. 

In order to impose any constraints on the RLS model, a method called constrained 

recursive identification (CRI) was employed [133]. It was developed for the prediction of 

traffic patterns through an intersection. It utilized an equality-constrained optimization 

and then Bell's correction [134] to adjust the estimate for the inequality constraints. The 

method was shown numerically to obtain the same accuracy as the optimal solution based 

on both equality- and inequality-constrained optimization. The steps in the CRI algorithm 

were: 

(1) Compute the RLS estimate, 9(0. 

(2) Compute the equality-constrained least squares estimate using: 
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§(/) = §(/ -1)- PRTw\RQ{t)- b\ where R8 = b were the equality constraints. 

w = [rprt\1 

e(0=e(f) 

(3) Compute Bell's correction for the inequality-constraints (non-negativity). 

H = P-PRtWRP 

D = diag{l/ /z,,} 

/j* = T [ - DO (/)] where T[ ] truncates the negative elements of [•] to zero. 

d'(t) = 0(t) + Hju* 

(4) If not all elements of & (?) > 0 , then truncate once more to obtain 6' ' (t) and 

normalize by R 0" (?) 

(5) d(t) = &' (?) and the algorithm returns to Step 2. 

4.4.5.3 Nonlinear parameter optimization (NONLINOPTIM model) 

The nonlinear parameter optimization method (now referred to as the 

NONLINOPTIM model) used to estimate the unknown parameters was a gradient-based 

method (see Sec. 1.3.2). It was applied to the deterministic transient system. The Matlab 

function FMINCON, which is a constrained optimization function, was used. The 

NONLINOPTIM model found the values of the unknown parameters that minimized the 

I =T 2 
difference between C(?)-C(?) , where C(/) was calculated according to Eq. (26) and 

(=i 

T was the time period for which CO2 measurements were available. The reader is referred 

to [131] for details on FMINCON and APPENDIX A for the Matlab code. 
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4.4.5.4 Nonlinear parameter optimization with stochastic term (SDE model) 

The only difference between the nonlinear parameter optimization model with 

stochastic term (now referred to as the SDE model) and the NONLINOPTIM model from 

the previous section was the inclusion of the random term, AW, in Eq. (35). As discussed 

in Sec. 4.4.2, the random term AW was modeled as independent, normally distributed 

random variables with mean 0 and variance At„. In Matlab, this was modeled using the 

following functions: SQRT(A/„) xRANDN, where SQRT(Ar„) is the square root of the 

time step and RANDN randomly selects a number from the normal distribution. 

4.4.6 Solution condition 

A mathematical model (Eq. (23), (26), or (35)) was combined with the additional 

relationships (Eqs. (37) to (40)) in order to determine the rank of the known-information 

matrix. The rank of the known-information matrix must be equal to or greater than the 

number of unknown airflow rates in Q in order to solve for Q using the proposed 

mathematical models. 

In general, the number of interzonal airflows in a building with N physical zones 

was N{N-\). TWO other "zones" exchanged air with the physical zones: the outdoors and 

the ventilation system, which added 4N more unknown airflow rates (two paths for air 

exchange between each physical zone and the outdoors plus two paths for air exchange 

between each physical zone and the ventilation system). The ventilation system also 

exchanged air with the outdoors, which added 2 more unknown airflow rates. The 

additional relationships listed in Sec. 4.4.3 served to reduce the number of unknown 

airflow rates in Q. Thus, the rank of the known-information matrix must be > [ N(N-

l)+4iV+2-any additional relationships ]. 
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As an example, take a 3-zone building where N=3. The number of unknown 

airflow rates in Q would be initially calculated as jV(AM)+4AT+2=3(3-l)+4(3)+2 = 20. 

Using the additional relationships in Sec. 4.4.3, N=3 can be subtracted from this number 

7V=3 supply airflow rates into each physical zone are known. The total outdoor air 

supplied to the building through the ventilation system and total air exhausted from the 

building by the ventilation system are also known, which reduces the number of unknown 

airflow rates by another 2. This gives 20-3-2=15 unknowns. Thus, the rank of known-

information matrix must be > 15 in the case of a 3-zone building. 

4.4.7 Uncertainty in building airflow network inverse model 

Uncertainty analysis for the deterministic inverse models can be performed using 

one-way or two-way sensitivity analyses, first-order uncertainty analysis, or Monte Carlo 

analysis. The sensitivity analyses required that the upper and lower bound on the inputs 

were known. In this research, that would mean knowing the upper and lower bounds on 

CO2 measurements. These bounds could not be generalized to all buildings under all 

conditions. A first-order uncertainty analysis required using the variance of each input 

(i.e., CO2 measurements), which could not be generalized to all CO2 sensors. Each sensor 

would have exhibited individual characteristics, such as in accuracy, precision, false 

detection rate, etc. Thus, a Monte Carlo analysis was selected. The parameter estimation 

was repeated a sufficiently large number of times (X), each time applying a random error 

to each input from a known variance, or in this research, a known sensor error. Random 

error was applied to the CO2 concentration using the sensor models to be described in Sec. 

4.5.1. Monte Carlo analysis resulted in ^discrete values for each of the unknown 

parameters. Together, they approximated the true distribution of the unknown parameters. 
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In essence, each parameter was described by a mean value and a standard deviation. The 

uncertainty in the stochastic inverse model was performed by repeating the parameter 

estimation X number of times, each time randomly selecting a different value for the 

random term, AW. Only one set of C0 2 measurements was needed. 

In this research, Xwas selected as 1,000, which is commonly selected for Monte 

Carlo analyses. Parameter estimation was also performed with X=\ for comparison. 

4.5 Study methods 

Figure 4-3 summarizes the study process. In lieu of experimental data, the first 

step was to develop a synthetic test building using CONTAM (Step 1). The developed 

CONTAM model determined the pressure distribution, the airflow rate through each 

leakage path and the ventilation system (Step 2), and CO2 concentration (Step 3). 

Simulated CO2 concentrations from the synthetic test building were then fed into a sensor 

model (Step 3a, Sec. 4.5.1). Two types of sensor models were used, namely, a perfect 

sensor model, where synthetic C0 2 concentrations were directly used to simulate 

synthetic perfect measurements', and a "real-world" sensor model, where synthetic 

imperfect measurements were generated by adding random bias and/or precision sensor 

errors to the simulated CO2 concentrations. The building airflow network inverse model 

was then developed using the mathematical models described in Sec. 4.4.5 and the 

synthetic CO2 measurements (perfect and imperfect) (Step 4). 

The developed building airflow network inverse model from Step 4 was used to 

estimate a building airflow pattern. This was then compared to the one that was simulated 

by the CONTAM model (Step 5). Keep in mind that CONTAM utilized nonlinear 

relationships between pressure and airflow to calculate airflow rates, whereas in this 
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research, linear relationships between contaminant concentration and airflows were 

utilized to develop a simplified inverse model. The developed building airflow network 

inverse model was also used to predict CO2 concentrations based on known occupancy 

schedule information (Step 6). The predicted CO2 concentrations were then compared to 

the synthetic CO2 measurements (perfect or imperfect) (Step 7). When comparing CO2 

concentrations (Step 7), two simulated CO2 concentration datasets were used. One dataset 

was the one used to develop the inverse model, and was labeled as "training data". The 

other dataset was also simulated by the CONTAM model but was not used to develop the 

inverse model. It was labeled as "testing data". Thus, the accuracy of the developed 

building airflow network inverse model was evaluated based on differences with the 

airflow rates and CO2 concentrations simulated by the CONTAM model. 

Figure 4-3. Flow diagram of study process. 
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4.5.1 Sensor models 

As mentioned above, two types of sensor models were used: a perfect sensor 

model, where synthetic CO2 concentrations from CONTAM were directly used to 

represent synthetic perfect measurements', and a "real-world" sensor model, where 

synthetic imperfect measurements were generated. In the real-world sensor model, 

simulated CO2 concentrations from CONTAM were perturbed by (1) precision error and 

(2) precision error and a bias. The total error was thus ./precision error2 + bias2 % of the 

simulated concentration. The precision error was randomly selected for every time step 

that CO2 concentrations were simulated. When using steady-state CO2 data, the precision 

error was randomly selected once. The bias, on the other hand, was randomly selected for 

every sensor which "measured" concentration for each simulated zone, i.e., for each 

physical zone, the ventilation zone, and outdoors zone (see Sec. 4.4.3). The bias then 

remained constant for that particular sensor for every time step. The synthetic imperfect 

measurements were filtered in order to reduce noise. Filtering was performed by taking a 

30-min moving average. An example of the different types of synthetic measurements 

used to test the building inverse models in this research is shown Figure 4-4. 

4.5.2 Reporting uncertainty 

To express the uncertainty in the building airflow network estimated by the 

building airflow network inverse model, a minimum and maximum value for each of the 

unknown airflow rates was reported. This was also referred to as the range of the 

estimated airflow rate. The minimum and maximum values were calculated using the 
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Synthetic perfect C 0 2 

measurements 
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measurements 
(precision error and bias) 

Occupancy 

Figure 4-4. Example of synthetic perfect and imperfect CO2 measurements. 

estimated mean value ± the standard deviation of the estimate. These were obtained when 

either multiples sets of synthetic imperfect CO2 measurements were used (in the case of 

the deterministic inverse models) or the stochastic inverse model was used (Sec. 4.4.7). 

If the synthetic airflow rate from CONTAM fell within the range of the estimated 

airflow rate, then the difference between the two was reported as zero. On the other hand, 

if the synthetic airflow rate from CONTAM did not fall within the range of the estimated 

airflow rate, two quantities were reported: mean percentage error in Q and mean 

absolute error in Q. Using these reporting scheme, the average of the best estimate from 

the building airflow network inverse model was used to determine its estimation accuracy. 

The percentage error in Q was: 

\Synthetic airflow rate - Min or Max airflow rate \/Synthetic airflow ratex 100 (45) 

where |-| was the absolute value, and "Min or Max" were the lower or upper values in the 

range of the estimated airflow rate. The mean percentage error in Q was then the average 

of these errors for all unknown airflow rates. 
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For example, if the synthetic airflow rate for Q\ was 5 cfm, and the range of the 

estimated airflow rate was 0-10 cfm, then the difference between the two would be 0% 

since the estimated range included the synthetic value. On the other hand, if the synthetic 

airflow rate for Q2 was 10 cfm, and the estimated range was 0-5 cfm, then the difference 

between the two would be 110 cfm - 0 cfin|/10 cfm x 100 = 100% and 110 cfm - 5 

cfm|/10 cfm x 100 = 50%. If Q\ and 02 were the only two unknown airflow rates, then 

the mean percentage error in Q would be mean{0%, 50-100%)=25-50% for this example 

building airflow network. 

It should be noted that if a synthetic airflow rate were zero, then the percentage 

difference between that synthetic airflow rate and an estimated value was reported as 

100%, no matter the magnitude of the difference. This avoided division by zero in Eq. 

(45). 

The mean absolute error in Q was calculated as the average of the absolute error 

in Q for all unknown airflow rates. The absolute error in Q was: 

|.Synthetic airflow rate - Min or Max airflow rate | (46) 

Thus, for the example building airflow network, the absolute error in Q would be 0 cfm 

for Q\ and 5-10 cfm for Q2. The mean absolute error in Q would be mean(0 cfm, 5-

10 cfm)=2.5-5 cfm. 

4.5.3 Reporting building airflow network inverse model performance 

To express the performance of the building airflow network inverse model, the 

estimated building airflow network was used to predict CO2 concentrations. As discussed 

in the beginning Sec. 4.5, two predictions were made. The first prediction was made 

using the occupancy schedule used by CONTAM model to simulate the training data. 
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The training data was used to develop the inverse model. The second prediction was 

made using a different occupancy schedule used by CONTAM model to simulate the 

testing data. The testing data were not used to develop the inverse model. Both the 

training and testing data were fed into the sensor models before being respectively used 

to develop the building airflow network inverse model and test the ability of the building 

airflow network inverse model to predict CO2 concentrations that were not part of the 

training data. 

The accuracy of the CO2 concentration predictions was reported using the RSME 

in C for each physical zone (the "A" above C was dropped for clarity). It was expressed in 

ppm and calculated using the testing and training data. The RSME in C was the root-

mean-squared-error (RSME). RSME is the square root of the mean-squared-error (MSE), 

defined as: 

where C( is the predicted concentration, C, is the synthetic (perfect or imperfect) 

measurement, and E[-~\ is the expected value (i.e., mean). The average of the RSME in C 

for all physical zones was also reported. Mean and standard deviation values for the 

RSME in C were also reported when the building airflow network was estimated using 

imperfect measurements and/or the stochastic inverse model. 

The accuracy of the C0 2 concentration predictions was reported by an additional 

R2 value for each physical zone when the transient inverse model was tested. The R2 

value was the fit between the predicted concentration and synthetic measurements. The 

(47) 
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closer the value was to 1.0, the better the fit. It was unitless and calculated using the 

testing and training data. It was defined as the square of the correlation coefficient: 

where is the average of the predicted concentrations, fic is the average of the 

synthetic (perfect or imperfect) measurements, a t is the standard deviation of the 

predicted concentrations, and a c is the standard deviation of the synthetic (perfect or 

reported. Mean and standard deviation values for the R2 value were also reported when 

the estimated building airflow network was estimated using imperfect measurements 

and/or the stochastic inverse model. 

The performance of the proposed building airflow network inverse model was 

tested using two test cases - one for the steady-state system and the other for the 

transient system. Both test cases compared the performance of the proposed building 

airflow network inverse model using synthetic perfect and imperfect CO2 measurements. 

The developed building airflow network inverse model offered several advantages 

over the traditional blower-door and tracer gas tests discussed in Sec. 4.1. First, the 

inverse model was implemented on a multi-zone building, for which the use of traditional 

blower-door and tracer gas tests to determine air exchange rates is challenging. Second, 

the inverse model was able to determine airflow rates across the building envelope in 

each zone and also between zones. Third, the use of CO2 was advantageous as it would be 

(48) 

imperfect) measurements. The average of the R2 values for all physical zones was also 

4.6 Test cases 
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a naturally present tracer. CO2 sensors would be readily available and relatively 

inexpensive compared to the equipment needed to measure a traditional tracer gas such as 

SF6. And lastly, the inverse model provided a fast estimate of the building airflow 

network. It required less time to set-up than a traditional blower-door or tracer gas test 

and has the potential to determine a building airflow network in real-time. 

4.6.1 Test case 1 - steady-state system 

4.6.1.1 Building airflow network inverse model (steady-state) 

A deterministic inverse model was used for the steady-state system. From Sec. 

4.4.1, the mathematical model for the building airflow network was: 

Q C = - G (23) 

From Sec. 4.4.5.1, the LSQ model was selected to solve Q, given this steady-state system. 

4.6.1.2 Synthetic test building 

A three-zone synthetic test building was modeled in CONTAM [5]. Figure 4-5 

shows the location of Zones A (common area), B (office), and C (conference room), 

along with their respective volumes. The exterior wall was modeled as brick veneer with 

a leakage property of 1.14 cm2/m2. The interior walls were modeled with leakage of 1.12 

cm2/m2. The inoperable closed windows were modeled with leakage of 0.86 cm2/m of 

sash. The interior open doors were modeled as 2.1 m2 openings. One-way flow through 

each of these leakage paths was governed by a power-law equation of the form F = 

K(AP)n, where F is the airflow rate (kg/s), AP is the pressure difference calculated by 

CONTAM (Pa), and K and n are empirical constants. For this synthetic test building, A=1 
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and n-0.65 for all of the leakage paths. All leakage properties were selected from data 

collected for commercial or other high-rise buildings [135]. 

A recirculation ventilation system was modeled with 20% outdoor air. The 

location of the outdoor air intake and total exhaust are shown in Figure 4-5. The supply 

fan delivered 4 m3/h (145 cfm) to Zone B and 20 m3/h (690 cfm) to Zone C, which were 

approximately 7 air changes per hour (ACH). Because Zone A was not mechanically 

ventilated and had a relatively large volume, the whole building air exchange rate was 

about 1 ACH. The figure shows the location of ductwork, diffusers, and exhausts. CO2 

was present in the outdoors (Zone 0) with a constant concentration of 400 ppm [136]. 

CO2 was generated by occupants in each zone at a rate of G = 0.311 L/min [137]. 

The maximum number of unknown airflow rates in this synthetic 3-zone test 

building was calculated to be 20 (see Sec. 4.4.6 for detailed calculation). The known 

airflow rates included the supply airflow rates to each zone (QSA, QSB, QSC), the total 

outdoor air supplied to the building through the ventilation system (Q0A); and total air 

exhausted from the building by the ventilation system (QEA)- Because Zone A was not 

mechanically ventilated, an additional known airflow rate was £?RA=0. Thus, the number 

of unknown airflow rates in this synthetic 3-zone test building was 20-6=14. 

Figure 4-6 graphically shows the location of these unknown airflow rates in the 

synthetic 3-zone test building. There were two exhausts modeled in Zone C (QKC\ and 

QRCI) as shown, but only the total exhaust rate, 2 r c , was estimated. The airflow rate 

estimated between two zones, including the outdoors, was the total airflow rate through 

all of the leakage paths between them. For example, there were two open doors and one 



www.manaraa.com

Zone 0 (outdoors) 
C0 = 400 ppm 

Outdoor Exhaust 
air in air out 

Wall crack (typ.) 

Zone A (common area), 336 m 

Door (typ.) ® -
Supply 
fan — ' 

a 

Zone B (office), 
37 m3 

Window (typ.) 

Zone C (conference room), 168 m Occupant (typ.) 
G = 0.311 L/min 

Notes: "typ." means typical. For leakage paths, such as wall crack, "typ." 
indicates that all wall cracks in the figure are represented by a similar icon 
(0). Also, all occupants are represented by ©. 

Figure 4-5. CONTAM model of synthetic 3-zone test building. 

interior wall leakage paths modeled between Zones A and C. However, the airflow rate 

that was estimated between them was represented by 0AC and gcA for the inverse model 

developed in this research. A non-negativity relationship was established (see Sec. 4.4.3) 

so that, in the example above, both QAC and QCA must be non-negative. 

In the example above, each of the two open doors and one interior wall leakage 

paths between Zones A and C was modeled as a separate one-way flow element. 

CONTAM then calculated the direction and magnitude of the flow across each leakage 

path. The net flow, either from Zone A to Zone C (QAC>0) or from Zone C to Zone A 

(2CA>0) , was calculated and used in defining the synthetic building airflow network. 

CONTAM also had the ability to model leakage paths with two-way flow, which is used 

when modeling open doors or windows. Two-way flow is driven by a temperature (or 

more precisely, air density) difference across the opening [5]. Since in this research, all 

zones were maintained at the same temperature, there was no need to model two-way 

flow in CONTAM. 
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Zone C, 168 ma 

Figure 4-6. Building airflow network to be estimated 
for synthetic 3-zone test building. 

4.6.1.3 Synthetic perfect and imperfect steady-state measurements 

The rank of the known-information matrix was calculated for up to 9 sets of CO2 

concentrations simulated by the CONTAM model for training. The datasets were 

simulated based on the occupancy information in Table 4-1. It was assumed that each 

occupant generated CO2 at a rate of 0.311 L/min. The resulting steady-state CO2 

concentrations simulated by CONTAM are given in Table 4-2. Since the number of 

unknown airflow rates in this synthetic 3-zone test building was 14, Table 4-3 shows that 

6 sets of CO2 concentrations were needed in order for the building airflow network 

inverse model to estimate the unknown airflow rates. Future work includes examining the 

effect of using more datasets (rank much greater than the number of unknown airflow 

rates) on the performance of the building airflow network inverse model. 
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Table 4-1. Number of occupants modeled in CONTAM for 3-zone synthetic test 
building (training data). 

Dataset Dataset Dataset Dataset Dataset Dataset Dataset Dataset Dataset 
1 2 3 4 5 6 7 8 9 

Zone A 1 1 1 1 1 1 1 1 1 
Zone B 1 1 1 1 1 1 2 3 4 
Zone C 5 4 3 2 1 0 1 2 3 
Total 7 6 5 4 3 2 4 6 8 

Table 4-2. Steady-state CO2 concentrations (ppm) simulated by CONTAM 
for 3-zone synthetic test building (training data). 

Dataset 
1 

Dataset 
2 

Dataset 
3 

Dataset 
4 

Dataset 
5 

Dataset 
6 

Dataset 
7 

Dataset 
8 

Dataset 
9 

Zone A 786 741 695 650 604 558 627 696 765 
Zone B 720 687 653 620 588 554 669 784 900 
Zone C 698 653 607 562 516 471 539 608 677 
Supply 611 583 555 527 499 471 522 573 625 

Table 4-3. Rank of CO2 training data datasets (steady-state). 
Number of datasets Rank 

1 7 
2 10 
3 13 
4 13 
5 13 
6 16 
7 16 
8 16 
9 16 

As discussed in Sec. 4.5.1, the simulated CO2 concentrations were directly used as 

synthetic perfect measurements. The simulated CO2 concentrations were perturbed to 

generate synthetic imperfect measurements. Two types of synthetic imperfect 

measurements were generated: one with precision error (±5.0% of the synthetic perfect 

measurement) and the other with precision error (±2.5% of the synthetic perfect 

measurement) and bias (±2.5% of the synthetic perfect measurement). To determine the 

uncertainty of the building airflow network inverse model, 1,000 randomly generated sets 



www.manaraa.com

165 

of synthetic imperfect CO2 measurements were used to determine a mean value and 

standard deviation of the unknown airflow rates. For comparison, just one randomly 

generated set of synthetic imperfect CO2 measurements was also used to estimate the 

unknown airflow rates. 

One set of testing data was generated in CONTAM (Table 4-4). This was also fed 

into the sensor models to generate synthetic perfect and imperfect measurements. The 

testing data was used to assess the ability of the estimated building airflow network (the 

one estimated using the training data) to predict contaminant concentrations that were not 

included in the training data. 

4.6.1.4 Results - synthetic perfect steady-state measurements 

Table 4-5 shows that a majority of the estimated airflow rates were in good 

agreement with the synthetic airflow rates when using synthetic perfect steady-state CO2 

measurements. The estimated building airflow network met all of the required constraints. 

For example, they (a) satisfied air mass balance in each zone (last six rows of Table 4-5) 

and (b) were all non-negative. 

The mean error in Q was 25% and 30 m3/h (18 cfm). This error was <0.5 ACH in 

any zone, where ACH (air change rate per hour) was defined as the airflow rate divided 

by the volume of a zone. The supply airflow rates to Zones B and C were 7 ACH; thus, a 

0.5 ACH error could be considered insignificant. A mean error in Q of 30 m3/h (18 cfm) 

also translated to 3% of the maximum value in Q. No tracer studies in the literature, 

whether synthetic or experimental, utilized steady-state CO2 measurements to estimate 

airflow rates. 
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Table 4-4. Testing data for 3-zone synthetic test building. 
Occupancy C0 2 concentrations from 

CONTAM (ppm) 
Zone A 2 747 
Zone B 1 655 
Zone C 2 571 
Supply N/A 537 

Table 4-5. Estimated building airflow network using synthetic perfect CO2 
measurements (steady-state, LSQ model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

Q O A 0 0 0% 
Q A O . 135 (79) 134 (78) 1% 
QOB 0 0 0% 
QBO 129 (75) 234 (137) 82% 
Qoc 0 0 0% 
Qco 104 (61) 0 100% 
Q A B 97 (57) 99 (58) 2% 
Q B A 0 0 0% 
Q A C 0 0 0% 
Q C A 233(136) 233 (136) 0% 
Q B C 0 0 0% 
Q C B 0 1 (1) 100% 
Q R B 218(128) 115 (67) 47% 
Q R C 841 (493) 943 (553) 12% 
ZQjA 233(136) 233 (136) 0% 
IQA ] 233 (136) 233 (136) 0% 
IQjB 346 (203) 349 (205) 1% 
iQai 346 (203) 349 (205) 1% 

1177 (690) 1177 (690) 0% 
ZQci 1177(690) 1177(690) 0% 

4.6.1.5 Results - synthetic imperfect steady-state measurements 

Minimum and maximum values of each of the estimated airflow rates are listed in 

Table 4-6 and Table 4-7. Whether using measurements with only precision error or with 

precision error and bias, a majority of the synthetic airflow rates fell within the range of 

the estimated airflow rates. In both cases, the estimated airflow rates satisfied the 

constraints for mass balance and non-negativity. 
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The mean error in Q was 21-27% and 39-49 m3/h (23-29 cfm) (3-4% max Q) 

when using synthetic imperfect measurements with only precision error. The mean error 

in Q was 22-25% and 32-36 m3/h (19-21 cfm) (3% max Q) when using synthetic 

imperfect measurements with precision error and bias. As was the case when using 

synthetic perfect measurements, these errors were <0.5 ACH in any zone. 

4.6.1.6 Performance of building airflow network inverse model 

Using the estimated building airflow network inverse model developed with 

synthetic perfect measurements, the RSME in C was calculated as <1 ppm (for both the 

training and testing data) (Table 4-8). This was <1% of the maximum concentration in 

any zone. Using the estimated building airflow network inverse model developed with 

synthetic imperfect measurements, the RSME in C was again calculated as <1 ppm (<1% 

of the maximum concentration in any zone) for each zone (for both the training and 

testing data) (Table 4-8). 

Table 4-8 shows that, as expected, the best estimate, both in terms of estimated 

airflow rates and contaminant prediction, was made using synthetic perfect CO2 

measurements. The next best estimate was made using synthetic measurements with 

precision error and bias. And the worst estimate was made using synthetic measurements 

with only precision error. The RSME in C and its uncertainty (i.e., standard deviation) 

were lower when using synthetic measurements with precision error and bias than when 

using synthetic measurements with precision error only to develop the inverse model. 

This was due to the values of the sensor errors selected (Sec. 4.6.1.3). Thus, it could be 
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Table 4-6. Estimated building airflow network using 1,000 sets of synthetic 
imperfect CO2 measurements with precision error (steady-state, LSQ model). 

Synthetic airflow rate, Estimated airflow rate, Synthetic value within 
m3/h (cfm) m3/h (cfm) estimated range? 

Min Max (If N, percentage difference) 
Q O A 0 8(4) 40 (23) N (100%) 
Q A O 135 (79) 27 (16) 167 (98) Y 
Q O B 0 0 3(1) Y 
QBO 129 (75) 158 (93) 338 (198) N (23-163%) 
Qoc 0 0 95 (56) Y 
Qco 104 (61) 0 205 (120) Y 
Q A B 97 (57) 0 106 (62) Y 
Q B A 0 0 46 (27) Y 
Q A C 0 0 115 (67) Y 
Q C A 233 (136) 114 (67) 201 (118) N (14-51%) 
Q B C 0 0 118 (69) Y 
Q C B 0 0 19 (11) Y 
Q R B 218 (128) 0 44 (26) N (80-100%) 
Q R C 841 (493) 1014 (594) 1077 (631) N (21-28%) 

233 (136) 122 (71) 287(168) Y 
£QAj 233 (136) 27 (16) 388 (227) Y 
ZQJB 346 (203) 249 (146) 377 (221) Y 
IQBj 346 (203) 158 (93) 546 (320) Y 
Z Q J C 1177 (690) 1177 (690) 1505 (882) Y 
ZQq 1177 (690) 1128 (661) 1502 (880) Y 

Table 4-7. Estimated building airflow network using 1,000 sets of synthetic 
imperfect C0 2 measurements with precision error and bias (steady-state, LSQ 

model). 
Synthetic airflow rate, Estimated airflow rate, Synthetic value within 

m3/h (cfm) m3/h (cfm) estimated range? 
Min Max (If N, percentage difference) 

Q O A 0 0 4(2) Y 
Q A O 135(79) 102 (60) 142 (83) Y 
Q O B 0 0 3(1) Y 
Q B O 129 (75) 175 (103) 333(195) N (36-159%) 
Qoc 0 18 (11) 42 (25) N (100%) 
Qco 104 (61) 0 102 (60) N (2-100%) 
Q A B 97 (57) 74 (43) 111 (65) Y 
Q B A 0 0 1 (1) Y 
Q A C 0 0 10(6) Y 
Q C A 233 (136) 208(122) 222 (130) N (4-11%) 
Q B C 0 0 9(5) Y 
Q C B 0 0 15(9) Y 
Q R B 218 (128) 10(6) 175 (103) N (20-95%) 
Q R C 841 (493) 883 (518) 1048 (614) N (5-25%) 
IQjA 233 (136) 208 (122) 227(133) N (2-11%) 
I Q A J 233(136) 176 (103) 263(154) Y 
I Q J B 346 (203) 323(189) 377 (221) Y 
ZQBJ 346 (203) 185(108) 518 (304) Y 
I Q J C 1177 (690) 1196 (701) 1239 (726) N (2-5%) 
IQc, 1177 (690) 1091 (639) 1388 (813) Y 
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concluded that there was a direct relationship between the performance of the 

deterministic building airflow network inverse model and the sensor error when 

synthetic steady-state measurements were used. 

It should be noted that the uncertainty in the RSME in C was almost equal to the 

mean value, i.e., the uncertainty was quite large, for both the training and testing data. 

Nevertheless, both the mean and uncertainty was <1 ppm. As expected, the RSME in C 

was slightly higher for the testing data than it was for the training data since the training 

data was used to develop the building airflow network inverse model. 

The difference between the performances of the building airflow network inverse 

models developed using synthetic perfect and imperfect CO2 measurements was 3-4% in 

terms of mean error in Q, which was 2-19 m3/h (1-11 cfm). The differences in terms of 

RSME in C was 1.2E-05 to 1.5E-03 ppm. Thus, it could be concluded that the use of 

synthetic imperfect measurements did not greatly affect the performance of the 

building airflow network inverse model developed for the steady-state system. 

Even if only one set of synthetic imperfect measurements were used to develop 

the building airflow network inverse, the mean error in Q was still <0.5 ACH in any zone, 

and the RSME in C <1 ppm (Table 4-8). Thus, the proposed building airflow network 

inverse model shows potential to be used in real-life with only one set of actual 

measurements. Nevertheless, the proposed building airflow network inverse model 

could be implemented offline, where 1,000 sets of synthetic imperfect measurements 

could be randomly generated from one set of actual measurements in order to determine 

the uncertainty in the estimated building airflow network. The computational time for this 

would be minimal. 
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Table 4-8. Summary of uncertainty and performance of building airflow network 
inverse model (steady-state, LSQ). 

Using 
Using 1,000 sets of synthetic 

measurements 
Using 1 set of 

synthetic 
measurements 

synu ieuc -
perfect 
meas. With precision 

error 
With precision 
error and bias 

With 
precision 

error 

With 
precision 
error and 

bias 
Mean error in Q 

Percentage 25% 21-27% 22-25% 38% 29% 
m3/h 30 39-49 32-36 70 45 
cfm 18 23-29 19-21 41 26 

RSME in C (ppm), training 
Zone A 7.6e-08 1.1e-3±7.6e-04 3.8e-5±1.9e-05 9.0e-04 4.0e-05 
Zone B 4.1e-08 9.0e-4±5.2e-04 1.7e-5±1.0e-05 8.0e-04 1,4e-05 
Zone C 0 6.0e-4±3.9e-04 1.4e-5±7.9e-06 1.8e-03 2.7e-06 
Mean 3.9e-08 8.7e-4±5.6e-04 2.3e-5±1.3e-05 1.2e-03 1.9e-05 

RSME in C (ppm), testing 
Zone A 6.0e-08 2.2e-3±2.4E-03 1.6e-4±1.5e-04 5.2e-06 6.0e-05 
Zone B 9.4e-08 1.0e-3±1.3E-03 2.3e-5±2.8e-05 6.9e-05 2.6e-06 
Zone C 0 8.0e-3±9.0E-04 1.6e-5±1.9e-05 2.8e-04 8.9e-06 
Mean 5.1e-08 1.3e-3±1.5E-03 6.7e-5±6.7e-05 1.2e-04 2.4e-05 

Note: Both 1,000 and 1 sets of synthetic C 0 2 measurements were used to develop the building 
airflow network inverse model. The "1 set" of synthetic measurements was generated by feeding 
the simulated C 0 2 concentrations from CONTAM into sensor models (Sec. 4.5.1). The "1,000 
sets" of synthetic measurements were generated by applying the sensor model 1,000 times in 
order to determine the uncertainty in the estimated building airflow network (Sec. 4.4.7). The table 
demonstrates that the proposed building airflow network inverse model has the potential to be 
used in real-life with only one set of actual measurements. 

The performance of the building airflow network inverse model can also be 

evaluated in terms of estimated infiltration rates through the building envelope in each 

zone. Table 4-9 indicates the mean difference in infiltration rates was about the same 

whether using synthetic perfect or imperfect CO2 measurements. How these differences 

may affect predicted IAQ or energy use is saved for future work. 

The leakiest zone simulated by CONTAM was Zone B (-0.94 ACH), which was 

also estimated by the building airflow network inverse model (-1.15 to -2.47 ACH). The 

negative sign indicated exfiltration rather than infiltration. One could reasonably use the 
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Table 4-9. Summary of error in infiltration rates. 
Using synthetic Using 1,000 sets of synthetic measurements 

Zone perfect meas., With precision error, With precision error 
% (cfm) % (cfm) and bias, % (cfm) 

A 1% 100% 0% 
(1) (4-23) 

B 82% 23-163% 36-159% 
(62) (17-123) (27-120) 

C 100% 0% 1-100% 
(61) (1-61) 

Mean 31% 20-44% 39-44% 
(21) (4-24) (16-24) 

results of the building airflow network inverse model to improve the airtightness at 

specific locations in a building to reduce the amount of energy wasted through 

exfiltration. 

Lastly, the performance of the building airflow network inverse model can also be 

evaluated in terms of a qualitative assessment of pressure distribution in the synthetic test 

building. The CONTAM simulated PA ~ PB < Pc- This pressure distribution that would 

also result from the building airflow network estimated using synthetic CO2 

measurements with precision error and bias, but not from the one using synthetic CO2 

measurements with only precision error. 

4.6.1.7 Conclusions for test case 1 - steady-state system 

(1) The proposed building airflow network inverse model performed similarly 

whether using synthetic perfect or imperfect CO2 measurements. The mean error 

in Q was <1 ACH, the RSME in C was <1 ppm, and the error in estimated 

infiltration rates was similar; 

(2) The proposed building airflow network inverse model has the potential to make 

good predictions for other gaseous contaminants; 
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(3) In terms of a qualitative assessment of pressure distribution, the proposed building 

inverse airflow model performed similarly whether using synthetic perfect or 

imperfect steady-state CO2 measurements with precision error and bias. 

4.6.2 Test case 2 - transient system 

In reality, steady-state CO2 measurements may be difficult to obtain. Therefore, 

test case 2 utilized perfect and imperfect transient CO2 measurements to develop a 

building airflow network inverse model. 

4.6.2.1 Building airflow network inverse models (transient) 

Both the deterministic and stochastic inverse models were used for the transient 

system. From Sec. 4.4.1, the deterministic mathematical model for the building airflow 

network was: 

C(t) = [QC(f - 1 ) + G(t - 1 ) ] ^ + C(t - 1 ) (26) 

The stochastic mathematical model for the building airflow network was: 

C(t) = 1 (qc(/ - 1 ) + G ( t - l ) )v + 1 (QC(/ - l))rAW (35) 

From Sec. 4.4.5, the LSQ, RLS, and NONLINOPTIM models were proposed to solve for 

Q in the transient system in Eq. (26). The SDE model was proposed to solve for Q in the 

transient system in Eq. (35). 

The RLS model used the difference between y(t) (actual/synthetic) and 

(pT{t)d{t -1) (calculated) to update the parameters at the current time step, as seen in the 

equation below (repeated from Sec. 4.4.5.2). 

9(0 = e(f - 1 ) + K ( t iy{t) - cpr (fMt -1)) (42) 
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The initial value of all parameters was set to 0.01, except for the known airflow 

rates (Sec. 4.4.3) which were given their synthetic values from CONTAM as initial 

values. The initial value of P was le+05. The RLS model quickly converged to a solution 

that was no better than the LSQ or NONLINOPTIM models. In fact, even though non-

negativity and mass balance constraints were satisfied, the constraints on the known 

airflow rates were not satisfied. Figure 4-7 shows that the final parameter values for gsc 

and QsB were less than their actual values. QRA should be zero since Zone A was not 

mechanically ventilated, but the RLS model estimated it to be a non-zero value. The 

correct values for the known airflow rates were all estimated using the other models. 

The initial value of all parameters was then set to 0.1, except for the known 

airflow rates. The RLS model once again quickly converged to a solution but it was even 

worse than the one made when the initial value of the parameters was set to 0.01. Finally, 

the initial value of all parameters was set to their respective synthetic values from 

CONTAM. The RLS model did not adjust the values as each synthetic measurement 

became available. Thus, the RLS model had the capability to estimate the correct 

parameter values but did not when the initial values of the parameters were set to values 

other than the synthetic ones. 

This led to the conclusion that the difference between the synthetic measurements 

and calculated concentrations was not sensitive enough to changes or errors in the 

parameter values. Thus, Q(t) was not properly updated as each synthetic measurement 

became available. In order to improve the performance of the RLS model, methods need 

to be employed to make the parameters more sensitive to the difference between y(t) 
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Days 

Figure 4-7. Parameter values for known airflow rates over time (RLS model). 

(synthetic measurements) and (p' {t)d{t - 1 ) (calculated concentration). One possibility is 

manually injecting CO2, as in a traditional tracer gas test, which may excite/perturb the 

system to be more sensitive to changes in the measurement matrix. This is saved for 

future work. Nevertheless, a recursive parameter estimation method may not be 

necessary as data collection and parameter estimation can be performed offline, as was 

demonstrated by the steady-state test case and the testing of non-recursive parameter 

estimation methods in this section. 

4.6.2.2 Synthetic test building 

The synthetic 3-zone test building used to test the building airflow network 

inverse model for the steady-state system was also employed to test the building airflow 

network inverse model for the transient system. The only difference here was that the 

mechanical ventilation system supplied 100% outdoor air. The results of this test case 

would not be affected if transient CO2 measurements from supply diffusers were 

available. 
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4.6.2.3 Synthetic perfect and imperfect transient measurements 

The rank of the known-information matrix was calculated for 1 day of CO2 

concentrations simulated every 5 min (300 sec) by the CONTAM model for training. 

Thus At =300 sec in Eqs. (26) and (35). One day of CO2 concentrations was then 288 

datasets. The datasets were simulated based on the occupancy information in Figure 

4-8(a). There were zero occupants modeled in Zone A (common area). The resulting 

transient CO2 concentrations simulated by CONTAM are also shown in Figure 4-8(b) for 

each of the three simulated physical zones. Since the number of unknown airflow rates in 

this synthetic 3-zone test building was 14, Table 4-10 shows that 108 sets (9 hrs) of CO2 

concentrations were needed in order for the building airflow network inverse model to 

estimate the unknown airflow rates. However, because the first nine hours of data 

included eight hours where there were no occupants, and thus no sources of CO2 (other 

than the outdoors), the entire day's data was used as training data. 

As discussed in Sec. 4.5.1, the simulated CO2 concentrations were directly used as 

synthetic perfect measurements. The simulated CO2 concentrations were perturbed to 

generate synthetic imperfect measurements. The precision error and bias used for the 

steady-state test case were also used for the transient test case. To determine the 

uncertainty of the deterministic building airflow network inverse models (LSQ and 

NONLINOPTIM models), 1,000 randomly generated sets of synthetic imperfect C0 2 

measurements were used to determine a mean value and standard deviation of the 

unknown airflow rates. To determine the uncertainty of the stochastic building airflow 

network inverse model (SDE model), 1,000 values of the random term were used to 

determine a mean value and standard deviation of the unknown airflow rates. For 
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comparison, just one randomly generated set of synthetic imperfect CO2 measurements 

and one value of the random term were also used to estimate the unknown airflow rates. 

Two days of CO2 concentrations (or 576 sets) of testing data were generated in 

CONTAM . These were also fed into the sensor models to generate synthetic perfect and 

imperfect measurements. An example of the testing data in Zone B is shown in Figure 

4-9. The testing data used to assess the ability of the estimated building airflow network 

to predict contaminant concentrations that were not included in the training data. 

Zone A Zone B Zone C 

12 

10 

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00 
Time 

6:00 9:00 12.00 15:00 18:00 21:00 0:00 
Time 

(a) Occupancy (b) CO2 concentration 

Figure 4-8. (a) Occupancy and (b) simulated CO2 concentrations in each simulated 
physical zone for 3-zone test building (training data). 

Number of datasets Rank 
1-95 8 

96-107 11 
108-288 14 
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Synthetic perfect C0 2 

measurements 
Synthetic imperfect C0 2 

measurements 
(precision error) 

Synthetic imperfect C0 2 

measurements 
(precision error and 
bias) 

Occupancy 

Figure 4-9. Example of testing data in Zone B. 

4.6.2.4 Results - synthetic perfect transient measurements 

The mean error in Q was 35.5-48.2% and 39-90 m3/h (23-53 cfm) (3-8% of max 

Q), depending on the transient inverse model used (Figure 4-10). Detailed tables 

comparing each estimated airflow rate with the synthetic value (such as Table 4-5 to 

Table 4-7 for the steady-state case) were not shown here for brevity. They can be found 

in APPENDIX F. This error was at most 2.4 ACH in Zone B. The supply airflow rate to 

Zone B was 7 ACH; thus, a 2.4 ACH error was about 30%. 

The mean error in q published in a similar synthetic tracer study [43] was 30% 

and 17.5 m3/h (10 cfm) (16% of max Q) using simulated annealing as the parameter 

estimation method. This result was for a test case when synthetic measurements were 

simulated every 50 sec and relatively precise (coefficient of variation=0.1). This result 

was 0.3-0.9 ACH, based on zone sizes simulated in their study. The zones they simulated 

were not mechanically ventilated. 
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In relation to the maximum value of Q, all three inverse models developed in this 

research performed better than the method described in the published synthetic tracer 

study [43]. The building airflow network inverse models developed in this research 

offered several advantages over the one reported in the published synthetic study. First, in 

the published synthetic study [43], multiple tracers were used to estimate unknown 

airflow rates. In contrast, one tracer was sufficient in this research to estimate unknown 

airflow rates as long as the rank of the known-information matrix was greater than or 

equal to the number of unknown airflow rates (Sec. 4.4.6). Second, no such condition(s) 

was discussed in [43] in regards to its method being generalized to a building/space of 

any size. 

Lastly, each building airflow network inverse model developed in this research 

offered an advantage over the simulated annealing method used in the published synthetic 

tracer study. The LSQ model also guaranteed a global minimum, whereas the simulated 

annealing method used in the published synthetic tracer study could not [43], The 

simulated annealing parameter estimation method would be useful in cases where the 

rank of the known-information matrix is less than the number of unknown airflow rates 

(Sec. 4.4.6). Neither the NONLINOPTIM nor SDE model may not offer any 

computational advantages over the simulating annealing method used in the literature, 

though the error in the estimated building airflow network was less. The SDE model 

offers an advantage over the estimation method presented in the literature by including 

uncertainty in both the concentration measurement and perturbations to the system (see 

Sec. 4.4.2).Results - synthetic imperfect transient measurements 
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The mean error in q was 8.5±0.5% and 8±0.4 m3/h (5±0 cfm) (<1% of max Q) 

when using synthetic imperfect measurements with precision error only and the LSQ 

model. These values were calculated according to the discussion in Sec. 4.5.2. They were 

lower than those calculated when using synthetic perfect measurements (Figure 4-10) 

because many of the synthetic airflow rates fell within the range of the estimated airflow 

rates. Thus, more "0% error" resulted in a lower mean error in q. The mean error in q 

increased when using synthetic imperfect measurements with precision error and bias, but 

it was still lower than when using synthetic perfect measurements. The values were 

26.4±2.2% and 26±2 m3/h (15±1 cfm) (2% of max Q). 

In contrast, the use of synthetic imperfect measurements did not affect the 

mean error in q for building airflow network estimates made by the NONLINOPTIM 

and SDE inverse models (Figure 4-10). The mean error in q was 44.8±0.0% and 

82±0 m3/h (48±0 cfm) (7% of max Q) using either set of synthetic imperfect 

measurements to develop the NONLINOPTIM inverse model. The mean error in q was 

40.1±8.7% and 77±16 m3/h (45±9 cfm) (7% of max Q) using synthetic imperfect 

measurements with precision error only to develop the SDE inverse model. It was 

39.6±6.5% and 76±12 m3/h (45±7 cfm) (7% of max Q) using synthetic imperfect 

measurements with precision error and bias to develop the SDE inverse model. There 

was larger uncertainty in terms of Q using the SDE inverse model than using the 

LSQ or NONLINOPTIM inverse model. 
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a 60% 

LSQ NONLINOPTIM SDE 
(a) Perfect measurements 

o 60% 

LSQ NONLINOPTIM SDE 
(b) Precision error only 

20% 

' f 

LSQ NONLINOPTIM SDE 
(c) Precision error and bias 

Figure 4-10. Comparing mean error in Q for three transient inverse models. 

Similar to the case when using synthetic perfect measurements, the mean error in 

Q was at most 2.2 ACH in Zone B using synthetic imperfect measurements. The mean 

error in q reported in the literature [43] was 81% and 36.9 m3/h (22 cfm) (34% of max Q) 

when using synthetic imperfect measurements (coefficient of variation=0.5) and 

simulated annealing as the parameter estimation method. This error was 0.6-1.8 ACH, 

depending on zone size. In a published experimental tracer study [40], the mean error in 
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Q was 8% and 5.0 m3/h (3 cfm) (3% of max Q) using nonlinear least squares as the 

parameter estimation method. 

In relation to the maximum value of Q, the LSQ inverse model developed in this 

research performed similarly to the method described in the published experimental 

tracer study [40]. The LSQ inverse model developed in this research offered 

computational savings over the nonlinear least squares parameter estimation method used 

in [40] to estimate airflow rates from tracer measurements. As was the case when using 

synthetic perfect measurements (previous section), in relation to the maximum value of Q, 

all three inverse models developed in this research performed better than the method 

described in the published synthetic tracer study [43]. Advantages of the building airflow 

network inverse models developed in this research over the one published in the synthetic 

tracer study were already discussed in the previous section and will not be repeated. 

4.6.2.5 Performance of building airflow network inverse model 

Using the estimated building airflow network inverse models developed with 

synthetic perfect measurements, the RSME in C (Figure 4-11 and Figure 4-12) was 

calculated as 1.7-6.5 ppm using the training data (0.2-1.1% of the maximum 

concentration in any zone) and 2.3-8.0 ppm using the testing data (0.3-1.1% of the 

maximum concentration in any zone), depending on the transient inverse model used. 

The RSME in C published in a synthetic tracer study was 0-33 ppm [43] (0-5% of the 

maximum concentration, depending on the zone). In another published synthetic tracer 

study, which also used C0 2 as the tracer, the RSME in C was 1.7-48.3 ppm [42] (2-11% 

of the maximum concentration depending on the zone). The fit between the synthetic 

measurements and predicted concentrations (R2 value) was calculated as 0.932-0.997 
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using training data and 0.905-0.995 using testing data, depending on the transient inverse 

model used. 

Using training data, the RSME in C was about the same (an average of 14.6±0.5 

ppm) for all three inverse models (Figure 4-11), using synthetic imperfect measurements 

with precision error only. Using synthetic imperfect measurements with precision error 

and bias, the RSME in C was on average 10.3±0.4 ppm for all three inverse models. 

Using testing data with precision error only, the RSME in C was about the same 

using the LSQ and NONLINOPTIM inverse models (16.4±0.2 ppm). The RSME in C 

was higher for the SDE inverse model (20.4±0.0 ppm). Using testing data with precision 

error and bias, the models performed differently, with the LSQ inverse model performing 

the best and SDE inverse model performing the worst. 

In relation to the maximum value of C, the inverse models developed in this 

research performed better than the methods described in the published synthetic tracer 

study [42]. Advantages of the building airflow network inverse models developed in this 

research over the one published in the synthetic tracer study were already discussed in the 

previous section and will not be repeated. 

The R2 value (also shown in Figure 4-11 and Figure 4-12) was lower (indicating a 

worse fit) when using synthetic measurements with error when compared to the values 

when using synthetic perfect measurements, which was to be expected. 

Using training data, the R2 value was about the same (an average of 0.827±0.014) 

for all three inverse models (Figure 4-11), using synthetic imperfect measurements with 

precision error only. Using synthetic imperfect measurements with precision error and 

bias, the R2 value was on average 0.908±0.007 for all three inverse models. 
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Using testing data with precision error only, the R2 value was about the same (an 

average of 0.816±0.005) for all three inverse models (Figure 4-12), using synthetic 

imperfect measurements with precision error only. Using testing data with precision error 

and bias, the models performed differently, with the LSQ inverse model performing the 

best (0.919±0.001) and the NONLINOPTIM and SDE inverse models performing worse 

(but about the same, an average of 0.876±0.001). 

2 0 . 0 
E a. a. 

1 15.0 
£ 
2 
o 
c 1 0 - 0 iij 
E u) 
a. 

6 0 6 5 

J 1 
LSQ NONLINOPTIM SDE 

(a) Perfect measurements 

1.0 25.0 

LSQ NONLINOPTIM SDE 
(b) Precision error only 

25.0 

20.0 ; 0.930+/-0.001 

LSQ NONLINOPTIM SDE 
(c) Precision error and bias 

Figure 4-11. Comparing RSME in C and R values for three transient inverse models 
(training data). 
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It could also be concluded that the proposed building airflow network 

inverse model has the potential to make good predictions for other gaseous 

contaminants as well. 

The uncertainty in the RSME in C was significantly less when using synthetic 

transient measurements compared to using synthetic steady-state measurements. Thus, 

the proposed building airflow network inverse model can be implemented in real 

buildings where transient measurements would be more easily obtained than 

steady-state measurements. As expected, the RSME in C was slightly higher for the 

testing data than it was for the training data since the training data was used to develop 

the building airflow network inverse model. 

The difference between the performances of the building airflow network inverse 

models developed using synthetic perfect and imperfect CO2 measurements was larger 

for the LSQ inverse model than it was for the NONLINOPTIM and SDE inverse models 

in terms of mean error in Q (Figure 4-10). The difference in LSQ inverse model 

performance was 26-28% and 31 m3/h (18 cfm), which was greater than the difference 

found in the steady-state test case also using the LSQ inverse model. The difference in 

NONLINOPTIM inverse model performance was 0% in terms of mean error in Q, 

whether using synthetic perfect or imperfect CO2 measurements. The difference in SDE 

inverse model performance was 2-17% and 2-28 m3/h (1-17 cfm), which was greater to 

the differences found in the steady-state case. It could be concluded that the use of 

synthetic imperfect measurements affected the performance of the LSQ and SDE 

building airflow network inverse models, but not the NONLINOPTIM model, in 
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Figure 4-12. Comparing RSME in C and R values for three transient inverse models 
(testing data). 

terms of the building airflow network only. In terms of RSME in C and R2 values, 

the use of synthetic measurements affected the performance of all the tested 

building airflow network inverse models. 

Even if only one set of synthetic imperfect measurements were used to develop 

each of building airflow network inverse models tested (or only one iteration of the 

random term in the SDE inverse model used), the mean error in Q was still at most 2.2 
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ACH in Zone B (30% of the supply ACH). The RSME in C and R2 values (training) were 

about the same as when multiple sets of synthetic imperfect measurements were used. 

Thus, the proposed building airflow network inverse model shows potential to be 

used in real-life with only one set of actual measurements. Nevertheless, the proposed 

building airflow network inverse model could be implemented offline, where 1,000 sets 

of synthetic imperfect measurements could be randomly generated from one set of actual 

measurements. 

The SDE inverse model required much more computational time (3 hours) than 

the LSQ and NONLINOPTIM models (~7 min.). In terms of inverse model performance, 

the SDE inverse model did not estimate a more accurate building airflow network nor 

was its estimate able to predict concentration more accurately than the other two inverse 

models. Nevertheless, only error in the C0 2 measurements was considered in this 

research. Future work includes studying the effects of error in the CO2 generation rate 

and in the measurements of Q on the performance of the proposed building airflow 

network inverse models. 

The performance of the building airflow network inverse model can also be 

evaluated in terms of estimated infiltration rates through the building envelope in each 

zone. Table 4-11, Table 4-12, and Table 4-13 summarize the results for the LSQ, 

NONLINOPTIM, and SDE inverse models, respectively. These tables indicate the mean 

difference in infiltration rates was about the same whether using synthetic perfect or 

imperfect CO2 measurements. The best estimate was provided by the LSQ inverse model. 
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Table 4-11. Summary of error in infiltration rates (LSQ, transient). 
Using synthetic Using 1,000 sets of synthetic measurements 

Zone perfect meas., With precision error, With precision error 
% (cfm) % (cfm) and bias, % (cfm) 

A 6% 17-37% 29-34% 
(5) (15-33) (26-30) 

B 100% 69-84% 29-117% 
(85) (58-71) (25-99) 

C 104% 40-100% 72-127% 
(80) (30-77) (55-98) 

Mean 70% 53-62% 62-74% 
(57) (45-50) (50-62) 

Table 4-12. Summary of error in infiltration rates (NONLINOPTIM, transient). 
Using synthetic Using 1,000 sets of synthetic measurements 

Zone perfect meas., With precision error, With precision error 
% (cfm) % (cfm) and bias, % (cfm) 

A 38% 38% 38% 
(34) (34) (34) 

B 51% 51% 51% 
(43) (43) (43) 

C 201% 201% 201% 
(154) (154) (154) 

Mean 97% 97% 97% 
(77) (77) (77) 

Table 4-13. Summary of error in infiltration rates (SDE, transient). 
Using synthetic Using 1,000 sets of synthetic measurements 

Zone perfect meas., With precision error, With precision error 
% (cfm) % (cfm) and bias, % (cfm) 

A 40% 5-61% 13-54% 
(36) (5-55) (11-49) 

B 62% 9-66% 21-58% 
(53) (7-56) (18-50) 

C 182% 167-236% 172-223% 
(140) (128-181) (132-172) 

Mean 95% 60-121% 69-112% 
(76) (47-97) (54-90) 

The uncertainty in the error was greatest when using the SDE inverse model, and least 

when using the NONLINOPTIM model. How these differences may affect predicted IAQ 

or energy use is saved for future work. 
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The leakiest zone simulated by CONTAM was Zone B (-1.05 ACH), which was 

not always the case using the building airflow network estimates provided by each 

inverse model. In most cases, the inverse models estimated Zone C to be the leakiest. The 

maximum difference among the inverse models, whether using synthetic perfect or 

imperfect measurements, was 55 cfm in Zone A, 103 cfm in Zone B, and 182 cfm in 

Zone C. 

Lastly, the performance of the building airflow network inverse model can also be 

evaluated in terms of a qualitative assessment of pressure distribution in the synthetic test 

building. The building airflow network estimate from the LSQ and NONLINOPTIM 

inverse models agreed the most with the synthetic pressure distribution from CONTAM. 

The building airflow network estimate from the SDE inverse model contained larger 

uncertainty. 

4.6.2.6 Conclusions for test case 2 - transient system 

(1) The uncertainty in Q and in RSME in C, i.e., the standard deviation, was much 

less in the case of using synthetic transient measurements than when using 

synthetic steady-state measurements to develop the transient inverse models; 

(2) The use of synthetic imperfect measurements affected the performance of the 

LSQ and SDE building airflow network inverse models, but not the 

NONLINOPTIM model, in terms of the building airflow network only. In terms 

of RSME in C and R2 values, the use of synthetic measurements affected the 

performance of all the tested building airflow network inverse models; 

(3) The building airflow network inverse models developed in this research offered 

several advantages over the one reported in the published synthetic study [42]: 
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a. One tracer was sufficient in this research to estimate unknown airflow 

rates as long as the rank of the known-information matrix was greater than 

or equal to the number of unknown airflow rates. 

b. No such condition(s) was discussed in the literature in regards to the 

published methods being generalized to a building/space of any size. 

c. Each building airflow network inverse model developed in this research 

offered an advantage over the methods used in the literature. 

i. The LSQ model guaranteed a global minimum, whereas the 

simulated annealing method used in the published synthetic tracer 

study could not. 

ii. Neither the NONLINOPTIM nor SDE model may not offer any 

computational advantages over the simulating annealing method 

used in the literature, though the error in the estimated building 

airflow network was less. 

iii. The SDE model offers an advantage over the estimation method 

presented in the literature by including uncertainty in both the 

concentration measurement and perturbations to the system (see 

Sec. 4.4.2). 

(4) The proposed building airflow network inverse model has the potential to make 

good predictions for other gaseous contaminants; 

(5) In terms of a qualitative assessment of pressure distribution, the proposed LSQ 

and NONLINOPTIM building inverse airflow models performed similarly 
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whether using synthetic perfect or imperfect CO2 measurements. There was 

greater uncertainty in the pressure distribution when using the SDE inverse model. 

4.7 Conclusions 

Synthetic steady-state and transient C0 2 measurements, without and with two 

types of sensor error, were used to estimate the building airflow network of a synthetic 3-

zone test building. Minimizing least squares (LSQ) was used to estimate the building 

airflow network using synthetic steady-state and transient measurements. Nonlinear 

parameter optimization was used for both a deterministic (NONLINOPTIM) and 

stochastic (SDE) inverse model of the building airflow network. It was found that: 

(1) The building airflow network inverse model tested in this research could be 

applied to a building of any number of zones as long as the rank of the known-

information matrix was equal to or greater than the number of unknown airflows 

in the building airflow network; 

(2) The building airflow network inverse model could be implemented offline. The 

computational time for the LSQ and NONLINOPTIM model was about 7 min 

when using one days of synthetic C0 2 measurements; 

(3) The estimated building airflow network could be used for: determining the 

building airtightness at specific parts of a building; provide a quick estimate of the 

transport of other unmeasured contaminants; and provide insight into the pressure 

distribution of a building. 

(4) The proposed building airflow network inverse models performed similarly, if not 

better, than ones published in the literature. They also offered computational 

advantages over the ones published in the literature. 
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Hypothesis #3: there exists a framework for easily and effectively determining the 

airflow pattern within a whole building using a distributed sensor network. The proposed 

building airflow network was fast and easy to set up. It proved computationally effective 

in estimating the building airflow network comparably to studies found in the literature. 

Portions of this work will be presented at the 1st International High Performance 

Buildings Conference later this month [138]. The full publication can be found in 

APPENDIX G. 

4.8 Future work 

A fast and robust method was developed to estimate a building airflow network 

that has potential to be used for applications such as determining building infiltration, 

contaminant transport, pressure distribution, and for building commissioning. Many other 

unidentified applications exist. Future work involves exploring the full potential of the 

estimation method proposed in this work. 

First, the distributed CO2 sensor system could be optimized in order to provide the 

information for an airflow estimate that is accurate, precise and reliable. This process 

could optimize the number of sensors and other sensor system performance metrics used 

in other industries (see Sec. 1.3.3.1 for those used in municipal water networks and Sec. 

1.3.3.2 for those used in chemical process plants). 

Second, pressure measurements can be made to further verify or enhance the 

estimated building airflow network. Pressure measurements across the building envelope 

at varying levels of estimated infiltration could be used to quickly determine the building 

envelope airtightness. The level of infiltration could be varied by manually adjusting the 

supply and return airflow rates from a particular zone. Pressure measurements between 
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the zone and the exhaust vent were used in calculate changes in air exchange rates due to 

the operation of a variable-air-volume (VAV) system [41]. 

Third, the building airflow network was assumed to remain constant in this 

research, which may not reflect actual operating conditions. VAV systems and operation 

during nighttime or weekend schedules introduce changes to the building airflow network. 

If a natural or hybrid ventilation system is in use, changes in outdoor (wind, temperature) 

and indoor conditions (occupant behavior) will also affect the building airflow network. 

The feasibility of including open windows, trickle vents, and other non-mechanical 

devices that are used in natural and hybrid ventilation systems should be explored in 

future work. This would be part of the proposed framework for the building airflow 

network inverse model discussed in Sec. 4.2. 

Fourth, when natural or hybrid ventilation systems are in use, then the effects of 

buoyancy and diffusion may play more of an important role in contaminant transport than 

when mechanical ventilation systems are in use. Thus, the feasibility of including these 

effects should be explored in future work. 

Fifth, other leakage paths exist in real buildings that were not accounted for in this 

research. They include air exchange between a zone and a ceiling plenum, and between 

zones through the ceiling plenum. The importance of understanding the pressure field, 

and thus airflow through these and other interstitial spaces is discussed in [139]. 

Sixth, formal metrics could be applied to the proposed estimation methods using 

ASTM D5157, as they were used to evaluate the tuned multizone models in Sec. 1.3.1.4. 

Lastly, as mentioned in the text: 
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This method should be extended to multi-story buildings or building with spaces 

of non-uniform (not well-mixed) conditions, such as atria or gymnasiums. The 

method should also be extended to spaces with much smaller or much larger air 

change rates. 

The RLS model was not successful in estimating the building airflow network 

because the difference between the actual and calculated concentration was not 

sensitive enough to changes or errors in the parameter (airflow) values. Methods 

need to be employed to make the parameters more sensitive to these differences in 

order to utilize RLS for building airflow network estimation. 

The inclusion of uncertainty in other coefficients of the governing equation, such 

as in Q, to account for uncertainty in airflow through an open door caused by 

occupant movement or window caused by wind, and in G, to account for 

uncertainty in the respiration rates of multiple occupants in a zone, should be 

performed for the SDE model. 

The method proposed for estimating a building airflow network should be 

validated with experimental data (see following section for possible datasets). 

The differences in the actual and estimated building airflow network should be 

examined in terms of predicted IAQ or energy use. 

Application-specific criteria for selecting the most appropriate model for 

estimating a building airflow network should be developed. For instance, one 

could use the sensor system design methods and performance metrics in Sec. 

1.3.3.2 to improve the design of a distributed CO2 sensor system in order to meet 

specific levels of reliability, redundancy, observability, and robustness for each 



www.manaraa.com

194 

application. Applications which may require different levels of these performance 

metrics are those for energy evaluation, decontamination, clean room 

(laboratories, hospitals), determining building envelope airtightness and 

infiltration, and many more. 

4.8.1 Validation 

Validation studies of the building airflow network estimation method presented in 

this research could verify whether in real buildings, the rank of the known-information 

matrix will be greater than the number of unknown airflow rates. Validation studies could 

also verify whether real-time CO2 measurements, subject to both sensor error and system 

variability, can be used to efficiently and accurately estimate the building airflow 

network. The following published studies are possible sources of experimental data for 

validating the building airflow network estimation method presented in this work. 

Validation is saved for future work. 

The National Center for Energy Management and Building Technologies has 

organized several projects in order to better understand and improve the performance of 

mechanical ventilation systems in the U.S. building stock. Their website lists over 25 

tasks in order to do so [140]. The first task was the "Measurement and Verification of 

Building Performance Characteristics" [141]. The objective of the study was to develop a 

protocol for assessing indoor air quality (IAQ). Measurements were taken at 10 U.S. 

office buildings located in various parts of the country. The buildings varied in size, 

occupancy, and year of construction. Air velocity and CO2 were measured in six 

locations in each building, each location representing a pre-determined zone. A similar 
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study was also performed for educational buildings (Task 13), which may also provide 

additional experimental data. 

One study discussed in Sec. 1.3.1.4 described the tuning of CONTAM with 

experimental data from a real building. In that study, CO2 was released as a tracer at the 

air handling unit (AHU) supply duct and measured at the AHU return duct. This 

measurement was then compared to one calculated by the tuned CONTAM model. The 

number of CO2 measurements was limited and thus, the agreement was not very good. 

However, this study is currently being extended in a project funded by the Department of 

Homeland Security (DHS) [142-143]. 

4.9 Plans for publication 

Possible publications: 

• Review of tracer gas studies conducted using C0 2 

• Development of deterministic and stochastic building airflow network inverse 

models utilizing CO2 measurements 

Possible journals: 

• Building and Environment, which has an impact factor of 1.192. 

• Journal of Environmental Monitoring, which has an impact factor of 2.0. 

• Indoor Air, impact factor of 1.59 
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5. CONCLUSIONS AND RECOMMENDATIONS 

In Part 1, a framework was presented for utilizing forward airflow models in 

systematic sensor system design. Specifically, how to select the simplest and most 

appropriate airflow model for sensor system design. It was found that for the zones tested 

and for sensor systems with more than one sensor, the simplest airflow model for sensor 

system design was either the multizone or zonal model. Also, none of the zone 

characteristics tested affected the selection of either the multizone or zonal model for 

sensor system design when the number of sensors was greater than one. 

In Part 2, a framework was presented for utilizing inverse airflow models to 

estimate airflow patterns within a single zone, which could then be used in systematic 

sensor system design. It was found for the developed inverse airflow model, inverse 

singular value decomposition, that velocity sensors placed on the wall closest to the 

outlet and that measured velocity in direction of bulk airflow most improved airflow 

estimation accuracy. Also, the use of temperature sensors systems was not recommended 

since a large number of sensors would be needed and, airflow pattern estimation was no 

better than using fewer velocity sensors. 

Lastly, in Part 3, a framework was presented for utilizing inverse airflow models 

to estimate airflow patterns within a whole building, which could then be used in 

systematic sensor system design, among other applications. It was found that utilizing 

synthetic imperfect measurements for training, all tested building airflow network inverse 

models performed similarly in terms of the accuracy of the estimated building airflow 

network. In terms of C0 2 prediction (using the testing data), performance varied among 

the tested inverse models, but the difference was <5 ppm. In addition, utilizing synthetic 
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transient measurements for training, the uncertainty in CO2 prediction was much less than 

utilizing steady-state measurements. The performance of the tested building airflow 

network inverse models were comparable to (if not better than) those for similar studies 

in the literature. Lastly, it was shown that the tested building airflow network inverse 

models could be extended to 1-story buildings of any size under certain conditions. 

Recommendations for future work include testing more zone types in Parts 1 and 

2. The results of this research could have a larger impact on the building industry with 

future development of the black-box model shown in the framework for developing a 

building airflow network inverse model (Part 3). Validation with experimental data is 

needed for all three parts of this research. 
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6. LONG TERM RESEARCH GOALS AND ENGINEERING IMPACT 

One long-term goal of this research is the protection building occupants in terms 

of their health, productivity, and safety. Adequately designed indoor air sensor systems 

will help to ensure this by continuously monitoring IAQ, which includes the presence of 

foreign/dangerous contaminants. The second long-term goal of this research is to be able 

to utilize the information gathered from indoor air sensor systems to further improve IAQ, 

ventilation performance, and reduce energy consumption. 

The results of Part 1 of this research (Chapter 2) demonstrated that sensor systems 

designed using data from simpler airflow models could perform just as well as those 

designed using more complex airflow models even in instances where the indoor space 

was not actually well-mixed. This offers computational savings for design engineers 

while not compromising sensor system performance. 



www.manaraa.com

199 

7. LIST OF REFERENCES 

1. EPA, Indoor Air Pollution: An Introduction for Health Professionals, E.P. 
Agency, Editor. 1994. 

2. Brown, S.K., Indoor air quality, in Australia: State of the Environment Technical 
Paper Series (Atmosphere). 1997. 

3. Fisk, W.J., Anibal T. De Almeida, Sensor-based demand-controlled ventilation: a 
review. Energy and Buildings, 1998. 29(1): p. 35-45. 

4. Dubberley, M., A.M. Agogino, and A. Horvath. Life-cycle Assessment of an 
Intelligent Lighting System Using a Distributed Wireless Mote Network, in 
Proceedings of IEEE International Symposium 2004. 2004. p. 122-7. 

5. Walton, G.N. and W.S. Dols, CONTAM 2.4 User Guide and Program 
Documentation. 2005, National Institute of Standards and Technology: 
Gaithersburg, MD. p. 313. 

6. Feustal, H.E. and B.V. Smith, COMIS 3.0 - User's Guide. 1997, Lawrence 
Berkeley National Laboratory. 

7. McDowell, T.P., et al., Integration of Airlfow and Energy Simulation Using 
CONTAM and TRNSYS. 2003 ASHRAE Transactions, 2003. 109(2). 

8. Haghighat, F. and A.C. Megri, A Comprehensive Validation of Two Airflow 
Models - COMIS and CONTAM. Indoor Air, 1996. 6(4): p. 278-288. 

9. Chung, K.C., Development and validation of a multizone model for overall indoor 
air environment prediction. HVAC&R Research, 1996. 2(4): p. 376-385. 

10. Emmerich, S.J., et al., Validation of multizone IAQ model predictions for tracer 
gas in a townhouse. Building Services Engineering Research and Technology, 
2004. 25(4): p. 305-316. 

11. Emmerich, S .J., Validation of Multizone IAQ Modeling of Residential-Scale 
Buildings: A Review. ASHRAE Transactions, 2001. 107(2). 

12. Wang, L. and Q. Chen, Evaluation of some assumptions used in multizone airflow 
network models. Building and Environment, 2008. 43(10): p. 1671-1677. 

13. Wurtz, E., J.-M. Nataf, and F. Winkelmann, Two- and three-dimensional natural 
and mixed convection simulation using modular zonal models in buildings. 
International Journal of Heat and Mass Transfer, 1999. 42(5): p. 923. 

14. Inard, C., H. Bouia, and P. Dalicieux, Prediction of air temperature distribution 
in buildings with a zonal model. Energy and Buildings, 1996. 24(2): p. 125. 

15. Laporthe, S., J. Virgone, and S. Castanet, A comparative study of two tracer gases: 
SF6 andN20. Building and Environment, 2001. 36(3): p. 313-320. 

16. Musy, M., et al., Generation of a zonal model to simulate natural convection in a 
room with a radiative/convective heater. Building and Environment, 2001. 36(5): 
p. 589-596. 



www.manaraa.com

200 

17. Mora, L., A.J. Gadgil, and E. Wurtz, Comparing zonal and CFD model 
predictions of isothermal indoor airflows to experimental data. Indoor Air, 2003. 
13(2): p. 77-85. 

18. Axley, J.W., Surface-drag flow relations for zonal modeling. Building and 
Environment, 2001. 36(7): p. 843. 

19. Jiru, T.E. and F. Haghighat, A new generation of zonal models. ASHRAE 
Transactions, 2006. 112(2): p. 163-174. 

20. Ren, Z. and J. Stewart, COwZ User's Guide: Zonal indoor source emission and 
dispersion model, Version 1. 2003, The School of Computer Science and 
QUESTOR Centre. 

21. Ren, Z., Enhanced modelling of indoor air flows, temperatures, pollutant 
emission and dispersion by nesting sub-zones within a multizone model. 2002, 
Queen's University: The United Kingdom, p. 269. 

22. Ren, Z. and J. Stewart, Simulating air flow and temperature distribution inside 
buildings using a modified version of COMIS with sub-zonal divisions. Energy 
and Buildings, 2003. 35(3): p. 257-271. 

23. Zhai, Z., et al., Evaluation of various turbulence models in predicting airflow and 
turbulence in enclosed environments by CFD: Part-1: Summary of prevalent 
turbulence models. HVAC&R Research, 2007. 13(6). 

24. Zhang, Z., et al., Evaluation of various turbulence models in predicting airflow 
and turbulence in enclosed environments by CFD: Part-2: Comparison with 
experimental data from literature. HVAC&R Research, 2007. 13(6). 

25. Chen, Q., Comparison of different k-s models for indoor air flow computuations. 
Numerical Heat Transfer, Part B: Fundamentals, 1995. 28(3): p. 353-369. 

26. Chen, Q., Prediction of Room Air Motion by Reynolds-Stress Models. Building 
and Environment, 1996. 31: p. 233-244. 

27. Stamou, A. and I. Katsiris, Verification of a CFD model for indoor airflow and 
heat transfer. Building and Environment, 2006. 41(9): p. 1171. 

28. Chen, Q. and W. Xu, A zero-equation turbulence model for indoor airflow 
simulation. Energy and Buildings, 1998. 28(2): p. 137-144. 

29. Musser, A., O. Schwabe, and S. Nabinger. Validation and calibration of a 
multizone network airflow model with experimental data, in Proceedings of eSim 
Canada conference. 2001. Canada, p. 228-235. 

30. ASTM, ASTM D5157-97 Standard Guide for Statistical Evaluation of Indoor Air 
Quality Models. 2003, American Society of Testing and Materials. 

31. Firrantello, J., Development of a Rapid, Data Driven Methodfor Tuning 
Multizone Airflow Models, in Architectural Engineering. 2007, Pennsylvania 
State University: University Park. p. 161. 

32. Firrantello, J., et al., Use of factorial sensitivity analysis in multizone airflow 
model tuning. ASHRAE Transactions, 2007. 113(1): p. 642-651. 

33. Jeong, J.-W., et al., Feasibility of wireless measurements for semi-empirical 
multizone airflow model tuning. Building and Environment, 2008. 43(9): p. 1507-
1520. 

34. Price, P.N., S.C. Chang, and M.D. Sohn, Characterizing buildings for airflow 
models - what should we measure? 2004, Indoor Environment Department: 
Lawrence Berkeley National Laboratory: Berkeley, CA. 



www.manaraa.com

201 

35. Zhang, Z. and Q. Chen, Comparison of the Eulerian and Lagrangian methods for 
predicting particle transport in enclosed spaces. Atmospheric Environment, 2007. 
41(25): p. 5236-5248. 

36. Wang, L. and Q. Chen, Validation of a coupled multizone and CFD program for 
building airflow and contaminant transport simulations. HVAC&R Research, 
2007. 13(2): p. 267-281. 

37. Tan, G. and L.R. Glicksman, Application of integrating multi-zone model with 
CFD simulation to natural ventilation prediction. Energy and Buildings, 2005. 
37(10): p. 1049-1057. 

38. Jayaraman, B., D. Lorenzetti, and A. Gadgil, Coupled model for simulation of 
indoor airflow and pollutant transport. 2004, Lawrence Berkeley National 
Laboratory. 

39. Wang, L. and Q. Chen, Theoretical and numerical studies of coupling multizone 
and CFD models for building air distribution simulations. Indoor Air, 2007. 17(5): 
p. 348-361. 

40. Miller, S.L., K. Leiserson, and W.W. Nazaroff, Nonlinear Least-Squares 
Minimization Applied to Tracer Gas Decay for Determining Airflow Rates in a 
Two-Zone Building. Indoor Air, 1997. 7(1): p. 64-75. 

41. Lu, T., et al., A novel methodology for estimating space air change rates and 
occupant CO2 generation rates from measurements in mechanically-ventilated 
buildings. Building and Environment, 2010. 45(5): p. 1161-1172. 

42. Lawrence, T.M. and J.E. Braun, Evaluation of simplified models for predicting 
CO2 concentrations in small commercial buildings. Building and Environment, 
2006.41(2): p. 184-194. 

43. Sohn, M.D. and M.J. Small, Parameter estimation of unknown air exchange rates 
and effective mixing volumes from tracer gas measurements for complex multi-
zone indoor air models. Building and Environment, 1999. 34(3): p. 293-303. 

44. Hasham, F.A., W.B. Kindzierski, and S.J. Stanley, Modeling of hourly NOx 
concentrations using artificial neural networks. Journal of Environmental 
Engineering and Science, 2004. 3(S): p. S111-S119. 

45. Goldberg, D.E., Genetic Algorithm in Search, Optimization and Machine 
Learning. 1989, Reading, Massachusetts: Addison-Wesley Pub. Co. 

46. Ali, M.M., C. Storey, and A. Torn, Application of Stochastic Global Optimization 
Algorithms to Practical Problems. Journal of Optimization Theory and 
Applications, 1997. 95(3): p. 545-563. 

47. Arvelo, J., et al., An Enhanced Multizone Model and Its Application to Optimum 
Placement of CBW Sensors. ASHRAE Transactions, 2002. 108(2): p. 818-825. 

48. Arora, J.S., M.W. Huang, and C.C. Hsieh, Methods for optimization of nonlinear 
problems with discrete variables: A review. Structural and Multidisciplinary 
Optimization, 1994. 8(2): p. 69-85. 

49. Carrano, J., Chemical and Biological Standards Study, DARPA, Editor. 2004, 
MicroSystems Technology Office. 

50. Berry, J., et al., Sensor Placement in Municipal Water Networks with Temporal 
Integer Programming Models. Journal of Water Resources Planning and 
Management, 2006. 132(4): p. 218-224. 



www.manaraa.com

202 

51. Watson, J.-P., R. Murray, and W.E. Hart, Formulation and optimization of robust 
sensor placement problems for drinking water contamination warning systems. 
Journal of Infrastructure Systems, 2009. 15(4): p. 330-339. 

52. Krause, A., et al., Efficient Sensor Placement Optimization for Securing Large 
Water Distribution Networks. Journal of Water Resources Planning and 
Management, 2008. 134(6): p. 516-526. 

53. Berry, J., et al., Designing contamination warning systems for municipal water 
networks using imperfect sensors. Journal of Water Resources Planning and 
Management, 2009. 135(4): p. 253-263. 

54. Lansey, K., et al., Locating Satellite Booster Disinfectant Stations. Journal of 
Water Resources Planning and Management, 2007. 133(4): p. 372-376. 

55. Tryby, M.E., et al., Facility Location Model for Booster Disinfection of Water 
Supply Networks. Journal of Water Resources Planning and Management, 2002. 
128(5): p. 322-333. 

56. Prasad, T.D., G.A. Walters, and D.A. Savic, Booster Disinfection of Water Supply 
Networks: Multiobjective Approach. Journal of Water Resources Planning and 
Management, 2004. 130(5): p. 367-376. 

57. Bagajewicz, M., A review of techniques for instrumentation design and upgrade 
in process plants. Canadian Journal of Chemical Engineering, 2002. 80(1): p. 3-
16. 

58. Airflow through large openings in buildings, in Airflow patterns within buildings, 
J. van der Maas, Editor. 1992, International Energy Agency: Switzerland, p. 168. 

59. Bhushan, M., S. Narasimhan, and R. Rengaswamy, Robust sensor network design 
for fault diagnosis. Computers and Chemical Engineering, 2008. 32(4-5): p. 1067-
84. 

60. Ali, Y. and S. Narasimhan, Sensor network design for maximizing reliability of 
bilinear processes. AIChE Journal, 1996. 42(9): p. 2563-2575. 

61. Bagajewicz, M.J. and M.C. Sanchez, Design and upgrade of nonredundant and 
redundant linear sensor networks. AIChE Journal, 1999. 45(9): p. 1927-1938. 

62. Dhillon, S.S., K. Chakrabarty, and S.S. Iyengar. Sensor placement for grid 
coverage under imprecise detections, in Information Fusion, 2002. Proceedings 
of the Fifth International Conference on. 2002. p. 1581-1587 vol.2. 

63. Chiu, P.L. and F.Y.S. Lin. A simulated annealing algorithm to support the sensor 
placement for target location, in Electrical and Computer Engineering, 2004. 
Canadian Conference on. 2004. p. 867-870 Vol.2. 

64. Hamel, D., et al. A Computational Fluid Dynamics Approach for Optimization of 
a Sensor Network, in Measurement Systems for Homeland Security, Contraband 
Detection and Personal Safety, Proceedings of the 2006 IEEE International 
Workshop on. 2006. p. 38-42. 

65. Lohner, R. and F. Camelli, Optimal placement of sensors for contaminant 
detection based on detailed 3D CFD simulations. Engineering Computations, 
2005. 22(3): p. 260-73. 

66. Tsujita, W., et al., Gas sensor network for air-pollution monitoring. Sensors and 
Actuators, 2005. B(110): p. 304-311. 



www.manaraa.com

203 

67. Seppanen, O.A., W.J. Fisk, and M.J. Mendell, Association of Ventilation Rates 
and CO2 Concentrations with Health and Other Responses in Commercial and 
Institutional Buildings. Indoor Air, 1999. 9(4): p. 226-252. 

68. Schell, M.B., Stephen C. Turner, R. Omar Shim, Application of C02-Based 
Controlled Ventilation Using ASHRAE Standard 62: Optimizing Energy Use and 
Ventilation. ASHRAE Transactions, 1998. 104: p. 1213-1225. 

69. Schell, M. and D. Int-Hout, Demand Control Ventilation Using C02. ASHRAE 
Journal, 2001. February(2001): p. 18-29. 

70. Zhai, Z., J. Srebric, Q. Chen, Application of CFD to Predict and Control 
Chemical and Biological Agent Dispersion in Buildings. International Journal of 
Ventilation, 2003. 2(3): p. 251-264. 

71. Zhang, T.F., Q. Chen, and C.-H. Lin, Optimal sensor placement for airborne 
contaminant detection in an aircraft cabin. HVAC&R Research, 2007. 13(5): p. 
683-696. 

72. Mazumdar, S. and Q. Chen, Influence of cabin conditions on placement and 
response of contaminant detection sensors in a commercial aircraft. Journal of 
Environmental Monitoring, 2008. 2008(10): p. 71-81. 

73. Brand, K.P. and M.J. Small, Updating Uncertainty in an Integrated Risk 
Assessment: Conceptual Framework and Methods. Insurance: Mathematics and 
Economics, 1996. 18: p. 147-147. 

74. Haupt, S.E., A demonstration of coupled receptor/dispersion modeling with a 
genetic algorithm. Atmospheric Environment, 2005. 39: p. 7181-7189. 

75. Haupt, S.E., G.S. Young, and C.T. Allen, Validation of a Receptor/Dispersion 
Model Coupled with a Genetic Algorithm Using Synthetic Data. Journal of 
Applied Meteorology and Climatology, 2006. 45(3): p. 476-490. 

76. Allen, C.T., G.S. Young, and S.E. Haupt, Improving pollutant source 
characterization by better estimating wind direction with a genetic algorithm. 
Atmospheric Environment, 2007. 41(11): p. 2283-2289. 

77. Mathur, R., S.G. Advani, and B.K. Fink, A real-coded hybrid genetic algorithm to 
determine optimal resin injection locations in the resin transfer molding process. 
Computer Modeling in Engineering and Sciences, 2003. 4(5): p. 587-601. 

78. Sohn, M.D., et al., Rapidly locating and characterizing pollutant releases in 
buildings. Journal of the Air and Waste Management Association, 2002. 52(12): p. 
1422-1432. 

79. Sreedharan, P., et al., Systems approach to evaluating sensor characteristics for 
real-time monitoring of high-risk indoor contaminant releases. Atmospheric 
Environment, 2006. 40(19): p. 3490-3502. 

80. Vukovic, V. and J. Srebric, Application of neural networks trained with multizone 
models for fast detection of contaminant source position in buildings. ASHRAE 
Transactions, 2007. 113(2). 

81. Federspiel, C.C., Estimating the Inputs of Gas Transport Processes in Buildings. 
IEEE Transactions on Control Systems Technology, 1997. 5(5): p. 480-489. 

82. Zhang, T.F. and Q. Chen, Identification of contaminant sources in enclosed 
environments by inverse CFD modeling. Indoor Air, 2007. 17(3): p. 167-177. 

83. Zhang, T.F. and Q. Chen, Identification of contaminant sources in enclosed 
spaces by a single sensor. Indoor Air, 2007. 17(6): p. 439-449. 



www.manaraa.com

204 

84. Liu, X. and Z.J. Zhai, Inverse modeling methods for indoor airborne pollutant 
tracking: literature review and fundamentals. Indoor Air, 2007. 17(6): p. 419-438. 

85. Liu, X. and Z.J. Zhai, Location identification for indoor instantaneous point 
contaminant source by probability-based inverse Computational Fluid Dynamics 
modeling. Indoor Air, 2008. 18(1): p. 2-11. 

86. Liu, X. and Z.J. Zhai, Prompt tracking of indoor airborne contaminant source 
location with probability-based inverse multi-zone modeling. Building and 
Environment, 2009. 44(6): p. 1135-1143. 

87. Nofsinger, G. and G. Cybenko. Distributed chemical plume process detection: 
MILCOM2005 #1644. in Military Communications Conference, 2005. MILCOM 
2005. IEEE. 2005. p. 1076-1082 Vol. 2. 

88. Rosen, G.L. ULA Delay-and-Sum Beamforming for Plume Source Localization, in 
Signal Processing Applications for Public Security and Forensics, 2007. SAFE 
'07. IEEE Workshop on. 2007. p. 1-4. 

89. Underwood, D., HVAC Controls After an Outside Contaminant Release. 
ASHRAE Journal, 2007. 49(4): p. 36-41. 

90. Chen, Y.L. and J. Wen, Sensor system design for building indoor air protection. 
Building and Environment, 2008. 43(7): p. 1278-1285. 

91. Chen, Y.L. and J. Wen, Comparison of sensor systems designed using multizone, 
zonal, and CFD data for protection of indoor environments. Building and 
Environment, 2010. 45(4): p. 1061-1071. 

92. Chen, Y.L. and J. Wen. Application of zonal model on indoor air sensor network 
design, in Proceedings of Sensors and Smart Structures Technologies for Civil, 
Mechanical, and Aerospace Systems 2007. 2007. San Diego, CA: SPIE 6529. 

93. De Chiara, J. and M.J. Crosbie, eds. Time-saver standards for building types. 4th 
ed. 2001. 

94. Wallace, L.A., S.J. Emmerich, and C. Howard-Reed, Continuous measurements 
of air change rates in an occupied house for 1 year: The effect of temperature, 
wind, fans, and windows. Journal of Exposure Analysis and Environmental 
Epidemiology, 2002. 12: p. 296-306. 

95. Haghighat, F., et al., The Influence of Office Furniture, Workstation Layouts, 
Diffuser Types and Location on Indoor Air Quality and Thermal Comfort 
Conditions at Workstations. Indoor Air, 1996. 6(3): p. 188-203. 

96. Sherman, M.H. and R. Chan, Building airtightness: research and practice. 2004, 
LBNL-53356. 

97. Srebric, J. and Q. Chen, A method of test to obtain diffuser data for CFD 
modeling of room airflow. ASHRAE Transactions, 2001. 107(2). 

98. Djunaedy, E. and K. W.D. Cheong, Development of a simplified technique of 
modelling four-way ceiling air supply diffuser. Building and Environment, 2002. 
37(4): p. 393. 

99. Huo, Y., et al., Systematic approach to describe the air terminal device in CFD 
simulation for room air distribution analysis. Building and Environment, 2000. 
35(6): p. 563. 

100. FLUENT, Airpak 2.1 User's Guide. 2002, Fluent Inc.: Lebanon, NH. 
101. ASHRAE, 1995 ASHRAE Handbook HVAC Applications. 1995, American 

Society of Heating, Refrigerating and Air-Conditioning Engineers. 



www.manaraa.com

205 

102. Nielsen, J.R., P.V. Nielsen, and K. Svidt. The influence of furniture on air velocity 
in a room - an isothermal case, in ROOMVENT '98: 6th International Conference 
on Air Distribution in Rooms. 1998. Stockholm, Sweden, p. 281-286. 

103. Persily, A.K. Airtightness of commercial and institutional buildings: blowing 
holes in the myth of tight buildings, in Thermal Envelopes VII Conference. 1998. 
Clearwater, Florida: ASHRAE. 

104. Persily, A.K., A. Musser, and D. Leber, A Collection of Homes to Represent the 
U.S. Housing Stock. 2006, National Institute of Standards and Technology: 
Gaithersburg, MD. 

105. Koestel, A., Computing Temperatures and Velocities in Vertical Jets of Hot or 
Cold Air. Heating, Piping & Air Conditioning, 1954(June): p. 110-148. 

106. Mathworks, Genetic Algorithm and Direct Search Toolbox. 2004, The Mathworks 
Inc.: Natick, MA. 

107. Institute, o.M., Chemical and Biological Terrorism - Research and Development 
to Improve Civilian Medical Response, I.o.M.a.M.R. Council, Editor. 1999, 
National Academies Press: Washington, D.C. 

108. Aubin, D., et al. Preliminary comparison of air change rates measured in Quebec 
City homes using SF. Syracuse, New York. p. 1-4. 

109. Golub, G, and W. Kahan, Calculating the Singular Values and Pseudo-Inverse of 
a Matrix. Journal of the Society for Industrial and Applied Mathematics: Series B, 
Numerical Analysis, 1965. 2(2): p. 205-224. 

110. Murakami, S. and S. Kato, Numerical and experimental study on room airflow -
3-D predictions using the k-s turbulence model. Building and Environment, 1989. 
24(1): p. 85-97. 

111. El Mankibi, M., et al., Prediction of hybrid ventilation performance using two 
simulation tools. Solar Energy, 2006. 80(8): p. 908-926. 

112. ASTM, ASTME779-03 Standard Test Methodfor Determining Air Leakage Rate 
by Fan Pressurization. 2003, American Society of Testing and Materials. 

113. CGSB, Determination of the Overall Envelope Airtightness of Buildings by the 
Fan Pressurization Method Using the Building's Air Handling Systems. 1999, 
Canadian General Standards Board. 

114. Jeong, J., et al., Case studies of building envelope leakage measurement using an 
air-handler fan pressurisation approach. Building Service Engineering, 2008. 
29(2): p. 137-155. 

115. Bahnfleth, W.P., G.K. Yuill, and B.W. Lee, Protocol for field testing of tall 
buildings to determine envelope air leakage rate. ASHRAE Transactions, 1999. 
105(2): p. 27-38. 

116. Roulet, C.A. and L. Vandaele, Air flow patterns within buildings: measurement 
techniques. 1991, AIVC. p. 265. 

117. McWilliams, J., Review of Airflow Measurement Techniques. 2002, Lawrence 
Berkeley National Laboratory, p. 116. 

118. ASTM, ASTM E741-00 Standard Test Method for Determining Air Change in a 
Single Zone by Means of a Tracer Gas Dilution. 2000, American Society for 
Testing and Materials. 

119. Aglan, H.A., Predictive model for CO2 generation and decay in building 
envelopes. Journal of Applied Physics, 2003. 93(2): p. 1287-90. 



www.manaraa.com

206 

120. Roulet, C.A. and F. Foradini, Simple and Cheap Air Change Rate Measurement 
Using CO2 Concentration Decays. International Journal of Ventilation, 2002. 1(1): 
p. 39-44. 

121. Penman, J.M., An experimental determination of ventilation rate in occupied 
rooms using atmospheric carbon dioxide concentration. Building and 
Environment, 1980. 15(1): p. 45-47. 

122. Penman, J.M. and A.A.M. Rashid, Experimental determination of air-flow in a 
naturally ventilated room using metabolic carbon dioxide. Building and 
Environment, 1982. 17(4): p. 253-256. 

123. Smith, P.N., Determination of ventilation rates in occupied buildings from 
metabolic CO2 concentrations and production rates. Building and Environment, 
1988. 23(2): p. 95-102. 

124. Yan, Y., et al. Measuring air exchanges rates using continuous CO2 sensors, in 
Symposium on Air Quality Measurement Methods and Technology 2007, April 30, 
2007 - May 3, 2007. 2007. San Francisco, CA, United states: Air and Waste 
Management Association, p. 101-108. 

125. Afonso, C.F.A., E.A.B. Maldonado, and E. Skaret, A single tracer-gas method to 
characterize multi-room air exchanges. Energy and Buildings, 1986. 9(4): p. 273-
280. 

126. Sinden, F.W., Multi-chamber theory of air infiltration. Building and Environment, 
1978. 13(1): p. 21-28. 

127. Oksendal, B., Stochastic differential equations. 6th ed. 2003, New York: 
Springer-Verlag. 

128. Carletti, M., Numerical solution of stochastic differential problems in the 
biosciences. Journal of Computational and Applied Mathematics, 2006. 
185(Copyright 2006, IEE): p. 422-40. 

129. Siurna, L., G.M. Bragg, and G. Reusing, Transient solutions to a stochastic model 
of ventilation. Building and Environment, 1989. 24(3): p. 265-277. 

130. Kloeden, P.E. and E. Platen, Numerical solutioin of stochastic differential 
equations. 1992, New York: Springer-Verlag. 

131. Mathworks, Matlab 7.9.0 (R2009b). 2009, The Mathworks Inc.: Natick, MA. 
132. Astrom, K.J. and B. Wittenmark, Adaptive Control. 1995, Addison-Wesley 

Publishing Company, Inc.: New York. 
133. Li, B. and B. De Moor, Recursive estimation based on the equality-constrained 

optimization for intersection origin-destination matrices. Transportation Research 
Part B: Methodological, 1999. 33(3): p. 203-214. 

134. Bell, M.G.H., The estimation of origin-destination matrices by constrained 
generalised least squares. Transportation Research Part B: Methodological, 1991. 
25B(1): p. 13-22. 

135. Persily, A.K. and E.M. Ivy, Input Data for Multizone Airflow and IAQ Analysis. 
2001, National Institute of Standards and Technology: Gaithersburg, MD. 

136. DOC. Trends in Atmospheric Carbon Dioxide. 2010; Available from: 
http://www.esrl.noaa.gov/gmd/ccgg/trends/. 

137. ASHRAE, ANSI/ASHRAE Standard 62-1989: Ventilation for acceptable indoor 
air quality. 1990, American Society of Heating, Refrigerating and Air-
Conditioning Engineers. 

4 

http://www.esrl.noaa.gov/gmd/ccgg/trends/


www.manaraa.com

207 

138. Chen, Y.L. and J. Wen. Estimating a Building Airflow Network using CO2 
Measurements from a Distributed Sensor Network, in 1st International High 
Performance Buildings Conference. 2010. Purdue University, West Lafayette, IN: 
Accepted. 

139. Lstiburek, J.W., K. Pressnail, and J. Timusk, Transient Interaction of Buildings 
with HVAC Systems-- Updating the State of the Art. Journal of Building Physics, 
2000. 24(2): p. 111-131. 

140. NCEMBT. Current NCEMBT Tasks. 1999; Available from: 
http://www.ncembt.org/our work/index.html. 

141. Stetzenbach, L.D., et al., National Center for Energy Management and Building 
Technologies, Task 1: Measurement and Verification of Building Performance 
Characteristics. 2008, National Center for Energy Management and Building 
Technologies: Alexandria, VA. 

142. Bahnfleth, W., Rapid semi-empirical tool for estimating air flow in facilities. In 
progress, Department of Homeland Security. 

143. Reddy, T.A., Rapid Semi-Empirical Tool for Estimating Air Flow in Facilities 
TSWG Task T-PR-1984; Task 16: Investigation of CO 2 tracer gas-based 
calibration. In progress, Department of Defense. 

http://www.ncembt.org/our


www.manaraa.com



www.manaraa.com

Framework for the Utilization of Forward and Inverse Airflow Models in 

Systematic Sensor System Design for Indoor Air 

A Thesis 

Submitted to the Faculty 

of 

Drexel University 

by 

Lisa (Yung Hua) Chen Ng 

in partial fulfillment of the 

requirements for the degree 

of 

Doctor of Philosophy 

August 2010 

VOLUME 2 of 2 (Appendices) 



www.manaraa.com

APPENDIX A Preliminary sensor system studies 



www.manaraa.com

Available online at www.sciencedirect.com 

ScienceDirect ™ ™ 
Iff 

ELSEVIER Building and Env i ronment 43 (2008) 1278-1285 
www.elsevier.com/locate/buildenv 

Sensor system design for building indoor air protection 
Y. Lisa Chen, Jin Wen* 

Civil, Architectural, and Environmental Engineering Department, Drexel University, Philadelphia, PA, 19104, USA 

Rece ived 10 Oc tober 2006; received in revised f o r m 13 January 2007; accepted 16 M a r c h 2007 

Abstract 

Many new biological and chemical sensors have been or are continuously being developed for infrastructure and environmental 
protection, e.g., for protecting the quality of water and indoor and outdoor air. However, there is a lack of fundamental system-level 
research leading to the development of sensor networks that both maximize protection and minimize the system cost for indoor air 
protection. Four key parameters are usually used to evaluate sensor performance: sensor sensitivity, probability of correct detection, false 
positive rate, and response time. The optimal design of a sensor system is affected by the above sensor performance parameters. This 
paper describes a preliminary study to: (1) identify simplified simulation and optimization strategies that can be used for sensor system 
design; (2) examine the relationships between sensor location, sensitivity, and quantity, and (3) use both detection time and total 
occupant exposure as optimization objective functions for sensor system design. Common building attack scenarios, using a typical 
chemical and biological warfare (CBW) agent, are simulated for a small commercial building. Genetic algorithm (GA) is then applied to 
optimize the sensor sensitivity, location, and quantity, thus achieving the best system behavior while also reducing the total system cost. 
Assuming that each attack scenario has the same probability for occurrence, optimal system designs that account for the simulated 
possible attack scenarios are obtained. 
© 2007 Elsevier Ltd. All rights reserved. 

Keywords: I ndoo r air quality; Chemical and bio log ica l war fare ( C B W ) agent; Sensor system design 

1. Introduction 

During the last few decades, significant effort has been 
made to ensure that buildings become safer, more energy 
efficient, and more cost effective than in the past. However, 
the public now expects the built environment to provide 
even more protection, especially against natural or man-
made extraordinary incidents since the tragic events of 
September 11th and the subsequent anthrax attacks. 
Buildings are especially vulnerable to chemical and 
biological warfare (CBW) agent contamination because 
the central air conditioning and ventilation system serves as 
a natural carrier for spreading the released agent from a 
single release location to the entire indoor environment and 
within a short period of time. CBW agents are normally 
highly lethal. It is reported that a person may suffer mild 
injury, serious injury, or even death, respectively, if as little 
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as 0.9, 10, or 15 mg VX gas (a nerve agent) is inhaled [1], 
Moreover, airborne CBW agents are usually colorless and 
odorless, exhibiting surprisingly rapid dispersion rates. 
Therefore, early detection and warning of airborne CBW 
agents play important roles in protecting the occupants and 
in minimizing the consequences of such extraordinary 
incidents. However, current built environments generally 
lack the ability to detect hazardous chemical and biological 
components in the indoor air [2]. 

Rapid advancements in sensing technology are making a 
variety of sensors that are able to detect indoor pollutants 
available, including those that can detect chemical and 
biological agents. It is envisioned that a baseline detect-to-
warn system will be available in the next one to 2 years, and 
a distributed low-cost sensor system will be available in the 
next 10 years [2], 

In order to realize such visions, system-level analysis is 
needed along with developing sensing technology. Differ-
ent sensing mechanisms offer different sensor character-
istics. For example, structure-based detection (such as 
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immunoassays) offers the greatest potential for identifica-
tion in less than 2 min with very low false alarm rates. On 
the other hand, nucleic acid sequence-based assays (such as 
polymerase chain reaction-based sensors) provide definitive 
confirmation of a specific agent. In general, sensors with a 
high detection threshold (i.e., low sensitivity) have lower 
false alarm rates, while sensors with a high sensitivity have 
higher false alarm rates. There is an opportunity to design 
a distributed sensor system composed of sensors with 
different characteristics in order to achieve the best system-
level protection. 

To achieve maximum protection, sensor locations also 
need to be carefully selected. It is not desirable to place 
sensors in locations where contaminant concentration is 
normally low at the beginning of an attack. For locations 
where a contaminant generally disperses rapidly, a fast 
response sensor is needed. Indoor air flow patters and 
contaminant movement is non-linear and complicated; 
therefore, predicting the contaminant dispersion path is not 
a trivial task, especially when different attack scenarios and 
interior arrangement of partitions and furniture exist. 

Sensor types, locations, quantities, and characteristics 
affect system costs, system-level detection probabilities, 
and system-level false positive rates. It is hypothesized that 
an optimized sensor system design does exist for a specific 
building. The focus of this project is to determine how to 
optimally design such a sensor system to ensure the safety 
of an indoor environment. 

Many characteristics can be used to evaluate a CBW 
sensor, among which sensitivity, probability of correct 
detection, false positive rate, and response time are four 
key parameters. Moreover, these parameters are interre-
lated. For example, when the sensor sensitivity is increased, 
the false positive rate is increased as well. The Receiver 
Operating Characteristics curve can be used to describe the 
inter-relationship among the four key characteristics. A 
graphical technique called the spider chart (Fig. 1) includes 
12 characteristics and is the recommended method to 
capture the overall performance of a CBW sensor [3], 

It is difficult to establish a certain sensitivity threshold 
because an extremely large uncertainty exists when 
attempting to relate an inhalation exposure level to the 
agent concentration in the air [3]. The ambiguity in the 
threat also suggests that the sensors need to have different 
modes of operation with different sensitivities/false positive 
rates for different threat probabilities. It is anticipated that 
a well-designed CBW sensor system, which is composed of 
sensors having different characteristics and operating 
modes, can reduce the system-level false positive rate and 
thus increase the system-level detection confidence, leading 
to better system-level protection. However, very few studies 
exist in the open literature that examine indoor air-sensor 
system design issues for protecting a building against CBW 
agent dispersion. 

Arvelo et al. [4] studied the possibility of using an 
enhanced multi-zone flow model, CONTAM [5], for CBW 
sensor location design. Only average mass flow and 

Fig . 1. Overa l l per fo rmance o f a C B W sensor (reproduced f r o m [3]). 

contaminant concentration are provided by CONTAM 
for each building zone, which limits its stand-alone 
application in CBW sensor design. Hence, the authors 
adopted a computational fluid dynamics (CFD) model to 
provide contaminant concentration information inside a 
zone, which is based on the average mass flow and 
contaminant concentration supplied by CONTAM. The 
authors simulated a Sarin attack for one floor of a two-
floor office building. Multiple releasing locations, each 
associated with an attacking probability, were generated. 
Genetic algorithm (GA) with a dynamic objective function, 
which accounts for varying releasing locations, was 
adopted. The optimal locations for two sensors that 
minimized detection time were selected. Although no 
internal partitions or furniture were considered in the 
building zones or the hallway, the study demonstrated the 
effect of the opening of office doors on the contamination 
concentration. 

Zhai et al. [1] adopted commercial CFD software to 
predict a gas-phase CBW agent dispersion in a section of a 
typical office building, which consisted of two identical 
offices separated by a corridor. Three agent-releasing 
locations were considered. The CBW agent dispersion 
information was then used to evaluate different sensor 
locations. This study demonstrated that the spreading rate 
of a CBW agent is very fast and will affect the occupants in 
5-10 min. No methodology on how to optimally select 
sensor locations was provided. 

The above studies demonstrate: (1) the effect that 
different sensor locations have on protecting the building 
against CBW terrorism; and (2) the feasibility of using fluid 
simulation software, especially CFD models, to select the 
indoor air sensor location(s). However, to design an indoor 
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air sensor system for a real building, the following 
challenges need to be overcome: (1) modeling a real 
building using CFD or other fluid simulation software is 
not an easy task; it requires detailed information about the 
building as well as a user with adequate knowledge of fluid 
physics and numerical techniques; (2) the computing time 
for a CFD model is very high, especially when the building 
is complex; (3) besides minimizing the time of detection, 
other design objectives, such as minimizing the population 
exposed, the air volume contaminated, and the total sensor 
system cost, need to be considered concurrently; (4) 
identifying the effect of different internal objects, such as 
furniture, partitions, appliances, and occupants, on the 
CBW agent dispersion and sensor system design is not a 
trivial task; (5) the impact of indoor pollutant type on 
sensor system design needs further investigation; (6) a 
methodology to combine sensors of different character-
istics into a single system in order to achieve optimal 
system-level protection is still lacking; and (7) a methodol-
ogy to evaluate a sensor system as a whole is also lacking. 

The objectives of this project, which is to respond to 
some of the challenges above, are to: (1) identify simplified 
simulation and optimization strategies that can be used for 
sensor system design; (2) examine the relationships between 
sensor location, sensitivity, and quantity, and; (3) use both 
detection time and total occupant exposure as optimization 
objective functions for sensor system design. 

2. Simulation model 

The air flow pattern and pollutant dispersion for a 
typical small office building after the release of a chemical 
weapon agent is modeled in this project using a multi-zone 
model, CONTAM [5], GA is then adopted as the 
optimization approach for sensor system design (intro-
duced in Section 3.1). CONTAM is introduced first in 
Section 2.1. Section 2.3 introduces the office building that 
is modeled in this study. 

2.1. Simulation software 

To design an indoor air sensor system, information 
about indoor pollutant distribution needs to be available. 
Various numerical models used to simulate the indoor 
pollutant dispersion in a built environment have been 
developed and reported in the literature. Sohn et al. [6] 
identified and reviewed currently available simulation 
models for determining the dispersion of CBW agents in 
and around buildings and serves as the basis for this 
discussion. For indoor air simulation, there are three 
categories of simulation models: CFD, multi-zone, and 
zonal models. 

CFD modeling has been continually validated ever since 
the early 1970s. However, the degree of accuracy of a CFD 
model depends on the correct representation of boundary 
conditions, the solution grid, and the level of transient 
characteristics. One of the biggest obstacles of using a CFD 

model is its high computational overhead. It would take an 
estimated 8-10 work weeks to completely model and 
analyze the air flow within a 60,000 sq ft. four-story office 
building using a commercial CFD package [6], 

In contrast, multi-zone models represent a building as a 
network of well-mixed zones (i.e., conditions such as 
temperature, humidity, air velocity, and pollutant concen-
tration are uniform within one zone), which are connected 
by discrete flow paths such as doors, windows, wall cracks, 
ducts, and hallways. The model then predicts the flow 
parameters based on mass conservation and component 
interaction. The major shortcomings of multi-zone models 
include: (1) they cannot determine detailed air flow within a 
zone and (2) they cannot model bi-directional floor-to-floor 
flows, duct junctions, and transport delays. However, the 
most recent release of CONTAMW, version 2.4 [5], is able 
to account for transport delays using a "one-dimensional 
convection/diffusion" model. This model creates contami-
nant concentration gradients along a specified axis in a 
zone and through an entire duct system. Despite the 
shortcomings in multi-zone models, compared with CFD 
modeling, multi-zone models are computational efficient 
and are able to consider numerous transient effects such as 
occupants coming and going, air handling units turning on 
and off, and wind directions, etc. 

When physical zones are large, the well-mixed condition 
assumed by multi-zone models would be unrealistic and 
inaccurate. A modeling approach called "zonal model", 
which aims at overcoming the simplicity of multi-zone 
model and the calculation complexity of CFD, has also been 
developed in the literature. In a zonal model, each physical 
zone is divided into a small number of sub-zones. Sub-zones 
can be further divided into standard flow zones and specific 
flow zones (including jets, plumes, heaters, and boundary 
layer zones) [7]. A challenge for a zonal model approach is 
to model the airflow pattern between zones. Many studies in 
the open literature have validated the use of zonal models to 
simulate indoor air flow and contaminant dispersion. A 
study by Mora et al. [7] compared zonal and CFD models to 
experimental measurements. The results showed that the 
CFD model was able to model air flow much more 
accurately than the zonal models employed. 

As a preliminary study, the authors have chosen to 
utilize the multi-zone model, CONTAMW2.4 [5] developed 
by the National Institute of Standards and Technology, in 
simulating the building air flow and contaminant disper-
sion process. The physical rooms are further divided into 
smaller zones in the simulation to justify the non-ideal 
mixing condition, which normally exists in a physical 
room. 

2.2. Building model 

A small office building, which is similar to Iowa Energy 
Center Energy Resource Station [5], is selected as the 
prototype building for this study. A schematic floor plan is 
shown in Fig. 2. The building is divided into three major 
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Fig. 2. Simulated building: I owa Energy Center Energy Resource Station [12], 

areas: the common area and two sets of zones, designated 
A and B. Each set of zones is comprised of an east, south, 
west, and interior zone. The common areas consist of office 
space, a display room, a computer center, two classrooms 
(not simulated), service rooms, a media center, a reception 
space, and a mechanical room. The actual building is 
served by three small air-handling units. In this study, 
however, only one larger air-handling unit is assumed to 
serve the entire building. The mechanical room is not air 
conditioned and is thus not included in the simulation 
model. Detailed dimensions of the floor area, doors, and 
windows are also included in Fig. 2. 

If each physically enclosed space in the building 
described above is considered as one zone, the building 
can be modeled in CONTAM as shown in Fig. 3a. To 
consider the non-ideal mixing condition, each enclosed 
space is further divided into smaller sub-zones. The scope 
of this study is to identify simplified sensor design strategy 
and to examine relationships among sensor characteristics 
and design objectives. Therefore, the size for sub-zones is 
only selected to be small enough to separate spaces that 
enclose major flow disturbing devices, such as diffusers and 
return grills. For example, a test room is divided into four 
sub-zones: one contains a diffuser one contains a return 
grill, one that does not contain any major flow disturbing 
devices but is next to the diffuser zone, and one that that 
does not contain any major flow disturbing devices but is 
next to the return zone. The average zone size in the sub-
zone model is about 6.5 m2 x 2.6 m high. The sub-zone 
model (Fig. 3b) increases the total number of zones from 13 
to 77. For brevity, the sub-zones created and shown in Fig. 
3b will be further referred to as simply "zones". In a 
follow-up study, the effect of zone sizes as well as different 

air flow modeling approaches (multi-zone model, zonal 
model, and CFD model) on sensor system design will be 
further discussed. 

Air flow between zones is modeled by a two-way flow 
model used for large openings [5], The discharge coefficient 
is 0.78 and the minimum temperature difference is 0.01 °C, 
provided by CONTAM [5]. The openings are modeled 
with dimensions of 2.7 x 2.4 m. The doors are modeled 
using the same flow parameters, except with dimensions of 
2.1 x 0.9 m for interior doors and 2.2 x 1.5 m for exterior 
doors. The windows are modeled using the WNI06AA-
CAV model supplied by the CONTAM library (typical 
inoperable window for building AA [8]). Seven occupant 
exposure models are placed in the building model (Fig. 3a). 
Each is modeled as a person weighing 70 kg and inhaling at 
a peak rate of 12L/min. Steady-state weather conditions 
(20 °C, 1 atm, Om/s wind speed) are used to simplify the 
simulation. The air handling unit that serves the building is 
the "simple air handling unit" model ([8]) with 4.7m3/s 
supply air flow rate and 0.47 m3/s outdoor air flow rate. A 
transient air flow simulation model is chosen. 

2.3. Contaminant releasing scenarios 

Sarin gas, a highly toxic nerve agent of high volatility, is 
selected as a typical chemical weapon agent to be simulated 
in this study. The source release rate is simulated using the 
cutoff concentration model [4], 

where S is the source strength, C is the current ambient 
Sarin concentration inside the zone where the source is 
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Fig. 3. Building model in CONTAM. 

located, G is the generation rate coefficient (5 mg/s), and 
Ccut is the cutoff concentration (0.1 kg/kg-air). Six releasing 
scenarios, including release around doorways, in the open 
office, and in enclosed offices, are assumed and simulated 
in this study (Fig. 3a). Each releasing location is given the 
same probability for occurrence. 

3. Sensor system optimization 

3.1. Optimization approach 

The contaminant dispersion process is a complicated 
non-linear process. Hence GA, a stochastic search algo-
rithm [9], is selected as the optimization approach because 
of its ability to handle complicated non-linear problems. 
Compared with other stochastic search methods, GA has 
the following features [9]: (1) GA works with a coding of 
the parameter set, not the parameters themselves; (2) GA 
searches for the optimized value from a population of 
points (multiple points) to another population instead of 
from a single point to another single point; (3) GA uses the 
objective function information rather than the derivatives 
or other auxiliary knowledge; and (4) GA uses probabilistic 
transition rules, not deterministic rules. 

Fig. 4 shows the basic process of a GA optimization. The 
user supplies n initial guesses for the design variables, 
which serves as the initial population. For each vector of n 
initial guesses, the objective function is calculated and 
compared. The vector that generates the optimal value of 
the objective function, whether the minimum or the 
maximum value depending on the definition of the 
problem, is called a best "parent". A second population 
is generated based on the information of the objective 
functions corresponding to each design variable. The goal 
is to generate a new population so that the "features" that 
make one vector yield better values of the objective 

Fig. 4. GA flow chart. 

function remain in the new population. Once a new 
population is generated, the values of the objective 
function are calculated and compared again. Thus, the 
third population is generated mainly by the best "parents" 
that yielded better values of the objective function in 
previous generations. This process is repeated until certain 
optimization criteria are satisfied. The terms "reproduc-
tion" and "crossover" (Fig. 4) represent processes that 
generate a new population from a previous population, 
guided by the information of the objective function for 
each vector. To prevent premature converging to a local 
optimal solution, a process called "mutation", which 
generates a new vector randomly, is involved in the 
process. 

3.2. Objective functions 

Two objectives, to minimize detection time and minimize 
occupant exposure, are considered in this study. The 
detection time of one sensor is defined as the earliest time 
when the sub-zone contaminant concentration, where a 
sensor is placed, is higher than the sensor sensitivity. The 
detection time of the &th releasing scenario, tdet.k, is defined 
as the shortest detection time among all the distributed 
sensors during the /cth scenario. For all six releasing 
scenarios, the objective function based on detection time, 
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Jdet) is thus defined by 

Jdet = x ?det-k, 
k= 1 

(2) 

where pk is the probability for the kth releasing scenario to 
occur. Besides detection time, total exposure for an 
occupant, which is also related to detection time, is another 
design criterion. The total exposure of all seven occupants, 
Ek, for the M i releasing scenario is defined as 

7 tjei-k 

Ek = EXP(W> o, (3) 
m= 1 1=0 

where Exp(m, t) is the occupant exposure for the mth 
occupant at time t, which is obtained by the CONTAM 
simulation. Thus, for all six releasing scenarios, the 
objective function based on total occupant exposure, 7exp, 
is defined by 

•/exp = ^Pk x Ek. (4) 
k= 1 

Cost is a constraint in this study because of the high 
expense of CBW sensors. The total cost of the sensor 
system, M, is determined by the single sensor price and 
total sensor quantity. Since the sensors chosen for this 
study have the same characteristics and thus the same unit 
price, the constraint, M, will be discussed based on sensor 
quantity alone. 

4. Results and discussion 

4.1. Simulation results 

The air flow rate through each air flow path after the 
contaminant is released is basically steady during our study 
and is not affected when changing the contaminant 
releasing location. Fig. 5 shows the direction and 
magnitude of the simulated air flow rates for each air flow 
path by CONTAM under the procedure described in 
Section 2.2. The length of each line represents the 
magnitude and direction of the air flow. It is observed 
that the air flow rate through diffusers, returns, and 
exterior doors are generally larger than the air flow rates 
through interior doors and between zones. The latter is due 
to the modeling of free air movement between zones when 
a physical wall is not present. 

The contaminant concentration for each zone varies with 
the contaminant releasing location. Fig. 6 shows the 
contaminant concentration in zones 18, 24, 28, 30, and 
36 when the contaminant is released from location 1 (refer 
to Fig. 3 for release location and Fig. 7 for location of 
zones). Fig. 6a shows that the contaminant concentration 
in these zones peaks within 15 min and gradually reduces to 
zero due to the ventilation dilution effect. Both the rate of 
the concentration variation and the peak value of the 
concentration vary from zone to zone, which verifies the 

Fig. 5. A i r flow rates through air f low paths. 

40 60 80 

Time, min 

F ig . 6. Contaminant concentrat ion and occupant exposure f o r releasing 

locat ion 1. 
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assumption that the sensor(s) location will affect the 
system-level detection time. Fig. 6b shows the occupant 
exposure when the contaminant is released at location 1. 
Contaminant concentration and occupant exposure under 
the other five releasing locations exhibit behaviors similar 
to those in Fig. 6 and are thus not provided. 

4.2. System design results 

The air flow rates, contaminant concentration, and 
occupant exposure are simulated for the six releasing 
scenarios. A sensor system is designed using the Matlab 
GA optimization toolkit [10] after the simulation. The 
selection of sensor quantities and location(s) for a fixed 
sensitivity are discussed in Section 4.2.1. For other 
sensitivities, the selection of sensor quantities and loca-
tion^) are discussed in Section. 4.2.2. 

4.2.1. Sensitivity — 0.03 mg/m3 

The first case discussed here is when the sensor sensitivity 
is a fixed value, such as 0.03 mg/m3 (portable sensor, $7500 
each [11]). Because there are many locations where the 
contaminant concentration is higher than the sensitivity 
after 1 min, the minimum detection time is 1 min when the 
sensor quantity is large enough. The sensor quantity is 
originally set at six because six releasing scenarios are 
considered. When the sensor quantity is six, many sensor 
location design exist that will provide a minimum detection 
time of 1 min for all six releasing scenarios. Table 1 
summarizes some location combinations (refer to Fig. 7 for 
zone number). The total number of sensors can be reduced 
to two while still ensuring the detection time to be under 
1 min (Table 1). When the total number of sensors is larger 
than one, using minimum detection time or minimum 
occupant exposure as the objective function yields similar 
results. When the sensor quantity is reduced to two, the 
sensor arrangement is unique in order to achieve a 
detection time of 1 min. If the sensor quantity is further 
reduced to one, there would be at least one releasing 
scenario when the minimum detection time is 2 min, no 

Quant i ty Detect ion t ime Object ive Loca t i on 

6 1 min D or E 1, 4, 7, 27, 34, 50 

6 1 min D or E 8, 21, 29, 41, 62, 70 

6 1 min D or E 16, 21, 35, 39, 59, 69 

2 1 min D or E 21, 35 

1 2 min D 35 

1 2 min E 4 

Note: D is detect ion time; E is occupant exposure. 

matter which location is selected. However, at this time, 
using occupant exposure would yield a design that provides 
a minimum occupant total exposure. In order to maximize 
building protection, a specified detection time, such as 
2 min, may be required. Therefore, in the case of only one 
sensor, using occupant exposure as the objective function 
yields a better sensor system design because it minimizes 
the total occupant exposure and total detection time for all 
six releasing scenarios. 

4.2.2. Other sensitivities 

When the sensitivity of the sensor is lowered, i.e., the 
detection threshold is higher, not only the false positive 
rate decreases but also the cost of the sensor decreases as 
well. Therefore, sensors with lower sensitivities are 
examined in this study in order to observe the effect of 
this parameter on the design of the optimal sensor system. 
In general, lowering the sensitivity increases the minimum 
number of sensors that are needed to guarantee a specified 
detection time. Thus, in this study where there are a total of 
six possible releasing scenarios, a minimum of six sensors is 
needed to guarantee a detection time of 1 min, when the 
sensor sensitivity is less than 0.03 mg/m3. The sensor 
location design using a total of six sensors is not unique. 
However, as sensor sensitivity decreases further, the 
possible locations where the sensors can be optimally 
located are also reduced until an extreme case is met when 
the sensor sensitivity is the same as the initial contaminant 
releasing strength. For this extreme case, the sensor has to 
be placed in the same zone as the releasing location. Hence, 
six would be the maximum sensor quantity for this study 
since six releasing scenarios are simulated. 

Both sensor quantity and sensitivity affect detection time 
and occupant exposure. Likewise, the relationship among 
sensor quantity, sensitivity, and the cost of a sensor system 
is most likely non-linear and is thus currently not well 
defined. If this relationship were known, the sensor system 
that both maximizes protection and minimizes the system 
cost could be chosen. 

5. Conclusion 

Indoor contaminant sensor system design to protect a 
building from CBW attack is discussed in this study. 
Contaminant concentration and occupant exposure are 
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simulated using a multi-zone air flow model, for six 
contaminant releasing scenarios. GA is used to optimize 
the sensor system using either minimum detection time or 
minimum occupant exposure as the objective function. 
Sensor sensitivity, quantity, and location are considered 
when optimizing the sensor system with cost constrictions. 
In this study, six sensors guarantee a detection of 1 min 
under six releasing scenarios. However, the sensor quantity 
could also be lowered to two while still maintaining a 
detection time of 1 min, when sensor sensitivity is 0.03 mg/ 
m3. For any given sensitivity, a minimum sensor quantity 
that achieves the same minimum detection as using more 
sensors does in fact exist. Lowering the sensor sensitivity 
increases the minimum number of sensors needed through-
out the building. If the total sensor quantity chosen is less 
than this minimum sensor quantity, the desired detection 
time cannot be guaranteed because lowering the sensitivity 
raises the threshold at which the sensor begins to detect. It 
is also found that occupant exposure is a better objective 
function used to identify the locations that will minimize 
both detection time and total occupant exposure. 

6. Future work 

The selection of sensor quantity and location in this 
study were based on the air flow and contaminant 
dispersion results from a multi-zone model. It is desired 
to compare the sensor system designs when using multi-
zone model, zonal model, and CFD model approaches in 
the future. 

Design of a sensor system in this study was comprised of 
sensors that exhibited identical characteristics, such as type 
and sensor sensitivity. The possible benefit of incorporating 
sensors with varying characteristics into a single sensor 
system is another area for future research. Furthermore, 
the overall performance of a CBW sensor, as mentioned in 
Introduction, includes twelve characteristics, and all of 
them should be considered when embarking on sensor 
system design. 

While the authors chose two objectives for the sensor 
system design, to minimize detection and occupant 
exposure, other objectives for other building types exist, 

such as after CBW agent release, at what point is 
the building safe to allow occupants to re-enter. Esta-
blishing design objectives leads to future work in develop-
ing strategies to evaluate the performance of sensor 
systems. 
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A R T I C L E I N F O A B S T R A C T 

Sensors that detect chemical and biological warfare agents can o f fer early warning of dangerous 
contaminants. However, current sensor system design is mostly by intuition and experience rather than 
by systematic design. To develop a sensor system design methodology, the proper selection of an indoor 
a ir f low model is needed. Various indoor a ir f low models exist in the literature, f rom complex compu-
tational fluid dynamics (CFD) to simpler approaches such as mult izone and zonal models. A i r f l ow models 
provide the contaminant concentration data, to which an optimization method can be applied to design 
sensor systems. The authors utilized a subzonal mode l ing approach w h e n using a multizone mode l and 
we r e the first to utilize a zonal mode l for systematic sensor system design. The object ive of the study was 
to examine whether or not data f rom a simpler a ir f low mode l could be used to design sensor systems 
capable of per forming just as we l l as those designed using data f rom more complex CFD models. Three 
test environments, a small office, a large hall, and an of f ice suite we r e examined. Results showed that 
w h e n a unique sensor system design was not needed, sensor systems designed using data f rom simpler 
a ir f low models could per form just as we l l as those designed using CFD data. Further, only for the small 
o f f ice did the common engineering sensor system design practice of placing a sensor at the exhaust 
result in sensor system performance that was equivalent to one designed using CFD data. 
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1. Introduction 

Sensors are currently used in the building environment to 
monitor parameters such as temperature, humidity, and contami-
nant levels. Recently, the public and those involved in heating, 
ventilating, and air conditioning (HVAC) design have begun to focus 
on safety issues in the building environment, for instance, the 
potential for terrorist attack from the release of a chemical and 
biological warfare (CBW) agent inside buildings. Since HVAC 
systems circulate air throughout buildings, they can also serve to 
spread released CBW agents very rapidly. Properly designed sensor 
systems can help to reduce the impacts of such attacks by alerting 
building occupants. 

To design sensor systems for building environments, indoor 
airflow and contaminant dispersion patterns need to be known. 
This information can be collected experimentally, such as by tracer 
gas test. But these are often cumbersome and not cost effective. 
Therefore, it is advantageous to use airflow and contaminant 
dispersion simulation models in order to obtain such data. Airflow 
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models provide the contaminant concentration data, to which an 
optimization method can be applied to design sensor systems with 
given design objectives and constraints. Several airflow models 
exist in the literature, such as multizone, zonal, and computational 
fluid dynamics (CFD) models. 

Multizone models represent any building as a network of well-
mixed zones, i.e., temperature , humidity, mass flow and contami-
nant concentration are spatially uniform within each zone. Zones 
are connected by discrete flow paths, such as doors, windows, and 
cracks. Though easy to setup and computationally efficient 
compared to CFD models, multizone models cannot provide 
detailed airflow or contaminant dispersion information within 
a zone. 

Zonal models subdivide larger zones into subzones in order to 
offer an improved representat ion of actual airflow and contaminant 
dispersion within zones. Many classes of zonal models have been 
reported in the literature and are summarized by the authors in 
Ref. [1], The approaches are: power-law (PL), power-law with 
specific driven flow (PL-SDF), surface drag (SD), and surface drag 
with specific driven flow (SD-SDF). PL models exhibit dependence 
of pressure drop on the number of cells, while SD models eliminate 
this dependence. SDF modeling addresses the representation of jets 
and plumes. W h e n compared to CFD data, zonal calculations of 

http://www.elsevier.com/locate/buildenv
mailto:yhc22@glink.drexel.edu
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airflow elements, such as recirculation and entrainment of room air 
into the inlet jet, are more accurate than multizone calculations [1 ]. 
Like multizone models, zonal models are easy to setup and 
computationally efficient. 

Lastly, CFD numerically solves the partial differential equations 
governing fluid flow and contaminant dispersion, unlike multizone 
and zonal models which algebraically solve the governing equa-
tions. Thus, CFD is a computationally intense method for solving 
indoor airflow. Performing a CFD simulation also requires the user 
to have knowledge of fluid mechanics and numerical techniques. 
Nevertheless, countless studies have validated CFD results with 
experimental data. It is the most accurate of the three airflow 
models. 

All of the above three modeling approaches have been used to 
design sensor systems to protect the indoor environment. However, 
there is no systemic study reported that examines how data from 
different airflow modeling approaches affects the performance of 
the designed sensor systems. In the literature, the average predic-
tions of contaminant concentration of a multizone model were 
used to determine the location of a limited number of sensors in an 
office level using genetic algorithm (GA) as the optimization 
method [2], In another study, detailed contaminant concentration 
results from a CFD model provided data for optimal sensor place-
ment [3,4]. However, in the studies using CFD, no systematic 
approach to sensor placement was used. Sensor placement was 
based on concentration profiles at a few select locations. Further, 
the airflow model used in these and other sensor system design 
studies is often selected based on either convenience of using or 
accuracy of the airflow model. Thus, for an easy case setup and fast 
calculation, one would choose to use a multizone model to simulate 
the contaminant distribution needed for sensor system design. To 
conduct sensor system design based on more accurate contaminant 
distribution results, one would choose to use a CFD model. 

Contaminant concentration data, for which an optimization 
method is applied to design sensor systems, should be gathered for 
different release events, covering the range of possible events. 
Using the simpler airflow models, multiple release events can be 
simulated in a relatively short amount of time. However, the 
accuracy of the contaminant data is not guaranteed. On the other 
hand, using more sophisticated CFD models, fewer events can be 
simulated in the same amount of time. However, the contaminant 
data is more accurate. Nevertheless, how the differences in accu-
racy of the calculated contaminant concentrations impact the 
performance of sensor systems designed using data from the 
various airflow models has not been discussed in the literature. 
Thus, a systematic comparison of the effects of using different 
airflow models on sensor system performance is the purpose of this 
study. 

In a previous study conducted by the authors, both multizone 
and zonal model data were used to design sensor systems for two 
test spaces [5]. Small differences were found between sensor 
systems designed using multizone and zonal model data for 
a typical office. Greater differences were observed for a larger hall. 
The present study is a continuation of that work, which is to 
systematically compare the effects of using data from different 
airflow models on resulting sensor system design performance. The 
objective of this study was to determine whether or not data from 
a simpler airflow model could be used to design sensor systems 
capable of performing just as well as those designed using more 
accurate CFD data for various indoor environments. 

2. Study approach 

In this study, airflow and contaminant dispersion were simu-
lated for three test environments: a small office, a large hall, and an 

office suite. The airflow models used were the multizone model 
COMIS [6], the zonal model COwZ [7], and the CFD model Airpak 
[8], A subzonal approach was taken when using the multizone and 
zonal models, meaning each physical zone was first subdivided into 
subzones. The relationship between flow and pressure of adjacent 
non-physical subzones was assigned a power-law relation with 
a flow coefficient of 0.83 m s " 1 Pa~" and exponent, n, of 0.5 [9], 
Pressure differences between horizontal and vertical interfaces 
were distinguished by different relationships [10]. When using CFD, 
grid and time step sensitivity analyses were completed in order to 
determine the optimal mesh size and time step for each test 
environment. Mesh size analyses were not performed for the 
multizone and zonal models since the models have been shown to 
be relatively unaffected by changes in subzone size for test spaces 
similar to the ones in this study [9]. Time step sensitivity analyses 
were performed for the multizone and zonal models. Airflow was 
modeled in CFD using the indoor zero equation turbulence model 
since it has been shown to be appropriate for indoor airflow, for 
various indoor ventilation types, and is also computationally less 
intense than other turbulence models [11], All simulations were 
performed on a 32-bit Dell Dimension desktop with Intel Duo-Core 
Processor and 3GB RAM. 

A gaseous CBW agent was released at a constant rate from 
various locations in each test environment. Release locations were 
selected based on possible targets for effective dispersion or ease of 
accessibility. Sensor systems were then designed using the 
contaminant dispersion data calculated by each airflow model for 
each test environment. A "sensor system design" in this study 
refers to the arrangement of the sensors (i.e., their locations) given 
the design objective. The total number of sensors was used as 
a constraint. Sensor systems were designed to meet either one of 
two design objectives: minimize detection time or minimize 
occupant exposure. Genetic algorithm (GA) was the optimization 
approach used to design the sensor systems. 

Once a sensor system is designed, data from CFD models are used 
as synthetic experimental data to evaluate the detection times and 
occupant exposures (more generally referred to as "objective function 
values") associated with each sensor system design. These objective 
function values are given different descriptive names in this study. 
The terminologies used are: multizone-optimal, zonal-optimal, CFD-
optimal, and CFD-benchmarked objective function values. They differ 
in the airflow model data used to design the sensor system and the 
airflow model data used to calculate the objective function values 
associated with that sensor system. Fig. 1 demonstrates the connec-
tion between each name and the associated airflow models. 

When CFD data served as synthetic experimental data, volume-
averaged CFD concentration data was calculated based on the 
subzone sizes used for the multizone and zonal models. Comparing 
CFD-benchmarked values of detection time and occupant exposure 
to CFD-optimal ones shows whether or not data from simpler 
airflow models could be used to design sensor systems capable of 
performing just as well as those designed using more accurate CFD 
data. Thus, the CFD-benchmarked values represent the potential 
performance of the simpler airflow models, whereas the multi-
zone- and zonal-optimal values respectively represent the current 
capabilities of the multizone and zonal models. 

3. Test environments 

Three test environments were modeled in this study: a small 
office, a large hall, and office suite. The dimensions, number of 
subzones, and boundary conditions used to simulate each of the 
test environments are summarized in Fig. 2 and Table 1. In Table 1, 
the space names under "Office suite" are followed by brackets. 
Inside the brackets is the designation used to identify that space 



www.manaraa.com

Y.L. Chen, J. Wen / Building and Environment 45 (2010) 1061-1071 1063 

Airflow model used 
to design sensor 

system 

Multizone 

Airflow model data 
used to calculate 
objective function 

CFD 

Terminology given 
to objective 

function value 

Multizone Multizone-optimal Multizone Multizone-optimal 

*• CFD-benchmarked 

Zonal-optimal 

CFD-benchmarked 1 
I 1 

CFD CFD CFD-optimal 

Fig. 1. Connection b e t w e e n terminologies in s tudy and associated airf low models . 

when discussing the sensor systems later in the study. To use the 
multizone and zonal models, each zone was subdivided into 
subzones. Subdivision of the small office and large hall are shown in 
Fig. 3. Subdivision of the individual spaces in the office suite was 
similar to that for the small office in Fig. 3 and is not shown for 
brevity. The division of the subzones was designed to capture each 
inlet jet by following general guidelines provided in Ref. [10]. A 
study on a 2-D space using the subzonal approach with two 
subzone sizes, 0.8 x 2.0 m and 0.4 x 1.0 m, was performed [9]. The 
study reported insignificant differences in the calculated airflow 
using these two subzone sizes. Since the subzones in this study 
were similar to the sizes in Ref. [9], no grid sensitivity analyses were 
performed. Airflow simulation results would not have changed 
significantly with the use of subzones of a slightly different size. 
The doors simulated were 0.9 x 2.1 m high. For all of the test 
environments, it was assumed that the pressure and temperature 
inside the space was equal to that of the outside. Therefore, infil-
tration from the outdoor environment was not modeled. For the 
office suite, cracks were modeled between each space. Each crack 
was modeled with an air mass flow coefficient of 0.001 kg/s@l Pa 
and exponent of 0.65 [6]. Table 1 lists the locations of the cracks in 
the office suite. Inlet jets were modeled as isothermal and deliv-
ering 400 cfm through a 0.7 m-diameter diffuser. In the small office 

and large hall, none of the re turn air was recirculated back into the 
test space. For the office suite, 80% of the return air was mixed with 
20% outdoor air before being recirculated back into each space. 

Steady state airflow simulations were performed in CFD for all 
three test environments in order to perform mesh size analyses 
(Section 4). Time step analyses were then performed using the 
optimal mesh size. For CFD, a total simulation period of 4 min was 
used. Transient airflow and contaminant distribution simulations 
were performed for all three test environments using the multizone 
and zonal models. For the mult izone and zonal model, a t ime step 
of 1 min was used for a total simulation period of 2 h. Time steps of 
1 and 30 s were also tested. W h e n different t ime steps were used, 
the multizone- and zonal-optimal objective function values and 
sensor locations may or may not change. However, the general 
conclusions reported later were not affected. The difference in 
simulation periods for the multizone, zonal, and CFD models does 
not affect the results of this study. As long as the simulation period 
is longer than the contaminant release, the conclusions f rom this 
study will not be affected. 

The air change rate (ACH) is defined as the air changes per hour, 
which is calculated by dividing volumetric flow rate supplied to 
a space (m3 /h) by the volume of that space (m3). For each of the test 
environments, the airflow rate through a diffuser was kept constant 

a r X * 

A Small 
t 

5.5 m 
office 1 

• I 

• -5 .5 m - » 

Small office Office suite 

0 Supply diffuser 
0 Exhaust 

Fig. 2. Test envi ronments . 
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Tab le 1 
Boundary condi t ions of t e s t e n v i r o n m e n t s . 

Test D imens ions S u b z o n e s Doors Crack No of No of 
e n v i r o n m e n t ( L , : W x H), m loca t ion 3 inlets e x h a u s t s 

Small off ice 5.5 x 5.5 x 2.6 5 x 4 x 4 0 N/A 1 1 
U r g e hall 11 x 10 x 3.6 9 x 9 x 6 0 N/A 4 4 
Office sui te 

Office 1 [1] 5.5 x 5.5 x 2.6 5 x 4 x 4 1 [H2] 1 1 
Office 2 [2] 5.5 x 4.5 x 2.6 4 x 4 x 4 1 [H2] 1 1 
Office 3 [3] 5.5 x 4.5 x 2.6 5 x 4 x 4 1 [ H I ] 1 1 
C o m m o n 5.5 x 5.5 x 2.6 5 x 5 x 4 0 N/A 1 1 
Area [C] 
Hal lway 1 5.5 x 1.0 x 2.6 5 x 1 x 4 0 131 0 0 
[HI ] 

Hal lway 2 1.0 x 5.5 x 2.6 1 x 4 x 4 1 HI . 12] 0 0 
|H2] 

* Cracks w e r e m o d e l e d only for t h e off ice sui te . The crack connec t s t h e space 
u n d e r c o l u m n T e s t space" a n d t h e space t h a t is in b racke t s l is ted in this co lumn . For 
ins tance , a crack connec t s Office 1, d e s i g n a t e d [1], a n d Hal lway 2 [H2]. Thus, a crack 
also connec t s Hal lway 2 to Office 1 as specif ied in t h e last r ow . 

at 400 cfm. The Reynolds number for each test environment was 
maintained at approximately 24,000 in order that turbulent effects 
in the CFD model would be similar. The Reynolds number was 
calculated using the velocity through the diffuser and its diameter 
as the characteristic length. The small office and office suite had air 
change rates of 8.7 ACH, while the large hall had an air change rate 
of 6.9 ACH. In the literature on indoor sensor system design, ACH 
values of 4 [3] and 30 [2] were found. According to Ref. [12], typical 
ACH for commercial spaces is be tween 4 and 10. Thus, the ACH 
simulated for this study were within the general guidelines for 
commercial spaces and also reasonable compared to the values 
found in the literature. Further, the t ime step used was several 
times smaller than the t ime constant (1/ACH) for each space. 

3.1. Contaminant release 

The release of a CBW agent was modeled as a constant source 
(5mg/s ) that was present from t = 0 to t = 1.0 min. Four release 
locations were considered in the small office, five for the large hall, 
and six for the office suite (Fig. 4). For the small office, release 
location 1 was under the supply diffuser. Release location 2 was 
near the center of the room. Release location 3 was chosen near an 
occupant. Release location 4 was chosen along the wall where 
a door may be located. 

For the large hall, release location 1 was under a supply 
diffuser. Release locations 2 and 3 were near the wall, close to the 

exhausts. Release location 4 was near an inlet. Release location 5 
was in the center of the large hall. In the office, one contaminant 
was released in Offices 1, 2, and 3, respectively. Two contaminant 
release locations were in the Common Area. All contaminants 
were released on the floor. The release locations were designed for 
effective dispersion or ease of accessibility. They were also 
designed to test the simpler models based on differences in the 
airflow calculated by the three models. Large differences in airflow 
could lead to large differences in contaminant dispersion. Thus, by 
specifying contaminant releases in the subzones where the largest 
differences be tween the calculated airflow of the simpler airflow 
model and CFD model exist, it can be shown whe the r or not even 
the largest differences be tween the airflow models affect sensor 
system design. 

In this study, subzone location names are given by their 
respective x, z, and y cell index. For instance, in Fig. 4a, the first 
releasing location is in subzone i l l . The second releasing location is 
in subzone 321, and so on. In CFD, the contaminants are modeled as 
volumetric sources of size 0.25 x 0.25 x 0.25 m. 

4. CFD grid and time step sensitivity analyses 

The grid size used to model typical indoor spaces found in the 
literature varies widely. Therefore, an optimal mesh size and time 
step mus t be determined on a case by case basis. Structured meshes 
were used in this study. For the small office, results f rom using 
several mesh sizes and t ime steps were considered. The meshes 
used were: 10 x 10 x 10 cm uniform, 8 x 8 x 8 cm uniform, 
6 x 6 x 6 cm uniform, and each uniform mesh with three refine-
ments (Rl, R2, and R3). The "refined meshes" included different 
levels of clustering around the inlet, outlet, and contaminant 
sources. For each refinement, the initial grid perpendicular to the 
surface(s) of the inlet, outlet, and contaminants was 3.0 cm. For the 
Rl meshes, the grid sizes continued to increase toward the center of 
the test space at a ratio of 1.2. For the R2 meshes, the ratio 
decreased to 1.05, and for the R3 meshes, the ratio decreased to 
1.03. 

For the large hall, results f rom the following meshes were 
considered: 12 x 12 x 12 cm uniform, 10 x 10 x 10 cm uniform, 
8 x 8 x 8 cm uniform, and each uniform mesh with three refine-
ments . A 6 x 6 x 6 cm uniform mesh and its ref inements were not 
considered for simulation of the large hall because the number of 
grids (>3 million) would have exceeded the 32-bit capacity of the 
software and computer used for performing the simulations. For 
the office suite, results f rom the following meshes were considered: 

supply return 

/ / / / • > 
/ 

/ 

/ 

/ 

0.5 

0.5 

0.8 

0.8 

-I—I h 
1.4 0.8 1.1 1.1 1.1 

Small office 

• 

y 

1 .4 0 . 8 1 .2 2 . 2 

Large hall 

yvv 
1 .2 0 . 8 1 .4 1 .0 ° 

Fig. 3 . Subdivision of test env i ronments into subzones for mul t izone and zonal model ing. 
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-Rel.ease.1;i 
Small office Large hall Office suite 

Release no. Subzone loc. Release no. Subzone loc. Release no. Subzone loc.! 
1 111 1 241 1 [C]551 
2 321 2 511 2 [2]241 
3 141 3 391 3 (1)321 
4 341 4 771 4 [H2]111 

Occupant no. Subzone loc. 5 551 5 [3)111 
1 511 Occupant no. Subzone loc. 6 [CJ111 
2 141 1 331 Occupant no. Subzone loc. 

731 
461 
951 

(1)511 
(2)411 
(3)141 

[H2]141 

Fig. 4. Locations of con taminan t releases (under l ined) and occupant exposures (italicized) for th ree test envi ronments . Subdivisions s h o w n (not to scale). Note 1: see Table 1 and 
text for naming convention. 

10 x 10 x 10 cm uniform, 8 x 8 x 8 cm uniform, and 6 x 6 x 6 cm 
uniform, and each uniform mesh with three refinements. 

The CFD solutions in this study were considered converged 
when the sum of the solution residuals (for both flow and 
contaminant species) between iteration, i, and the one before it, 
i - 1, is le-03. For transient solutions, each t ime step was consid-
ered converged when the sum of the solution residuals was le-03. 

The number of nodes in the meshes considered varied from 
0.085 to 1.1 million for the small office, 0.535 to 1.9 million for the 
large hall, and 0.935 to 1.9 million for the office suite. The t ime steps 
(At) used were 0.25, 0.125, and 0.01 s. 

Resulting velocity profiles f rom the various meshes were 
compared for several locations around the room. It was found that 
velocity profiles under the inlet were more affected by the change 
in grid size than locations farther from the inlet. This result was also 
found for the airflow in the large hall and office suite. Thus, only 
velocity profiles under inlets were used in the selection of an 
optimal mesh for each test environment When the largest differ-
ence be tween the velocity profiles was less than 5%, the result was 

considered grid and t ime step independent . It was found that the 
8 cm (R2) mesh was an optimal mesh for the simulation of the 
small office with At = 0.125 s. It was found that the 10 cm(R2) mesh 
was an optimal mesh for the simulation of the large hall with 
A t = 0.125 s. This same mesh was found optimal for the simulation 
of the office suite as well, wi th At = 0.25 s. 

5. Simulation results 

Steady state airflow was first computed in each test environ-
ment before the contaminant was released. It was assumed that the 
contaminant release would not affect the airflow. Fig. 5 shows the 
airflow results through the diffuser in the small office. The striking 
difference between the multizone and the zonal model results is 
the representation of the inlet jet . The influence of the supply air is 
more pronounced in the zonal model result and agrees more with 
the CFD result. The reason for this difference is that multizone 
models only account for the pressure drop at the inlet, using 
a power-law equation. Thus, the incoming inlet je t loses its 

Multizone model *- 0.10 m/s 
Zonal model 

* - 0.10 m/s 

Fig. 5. Resulting airf low pa t te rns f rom different airf low models th rough the supply diffuser in the small office (no t to scale). 
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momentum upon entering the space. On the other hand, zonal 
models explicitly calculate the momentum of the inlet jet, along its 
axis. It is an empirical equation, which is a function of inlet area, 
inlet air speed, and distance from the inlet. Furthermore, the 
recirculation pattern predicted by the zonal model more resembles 
that predicted by the CFD model. 

Elsewhere in the small office, the airflow patterns calculated by 
the zonal model also matched more closely with the CFD results 
than the multizone model results. Similar to the airflow results, the 
contaminant dispersion calculated by the zonal model matched 
more closely with that of the CFD results than the multizone model 
results. These trends were also observed in the large hall and office 
suite. Airflow and contaminant dispersion results for the large hall 
and office suite are not shown for brevity. 

Intuition indicates that the differences in airflow and contami-
nant distribution calculated by the three airflow models will affect 
the performance of sensor systems designed using data from the 
respective airflow models. However, a sensor detects the presence 
of a contaminant once the concentration at a sensor is above the 
sensor threshold. The time at which detection occurs is not affected 
by the actual value of the concentration, as long as the value is 
above the sensor threshold. Therefore, it is possible that the 
differences in accuracy of the calculated contaminant concentra-
tions will not affect the performance of sensor systems designed 
using data from the various airflow models. 

6. Sensor system design results 

Sensor systems were optimally designed using the Matlab GA 
optimization toolkit [13] based on the contaminant data calculated 
by the various airflow models. Either of two objective functions was 
applied to GA: (1) minimize detection time or (2) minimize occu-
pant exposure. The objective function based on detection time,/ciet. 
is defined as [14]: 

N 

Jdet = J2 Pk x fdeHc (1) 
/<= 1 

where p/, is the probability for the fcth release location to occur, tdet-k 
is the detection time for scenario k, and N is the number of release 
locations, tdet-fc for a particular release location k given a multiple-
sensor system is the minimum detection time of all of the sensors. 
For example, for a 2-sensor system, the detection time for four 
release locations may be (1) for sensor one: 1.0, 2.0,1.5, and 1.0; and 
(2) for sensor two: 2.0,1.0,1.0, and 2.0. Thus, the detection time for 
each release location, fdet-k. given this 2-sensor system would be 
1.0,1.0,1.0, and 1.0. In this study, pk is 1 jN for all release locations. 
Therefore the objective function value, Jdet. is essentially the 
average detection time over all release locations, i.e., 
54(1.0 + 1.0 +1.0 + 1.0) = 1.0 min in the above example. The detec-
tion time for each release location is the t ime when the measured 
contaminant concentration reaches the sensor threshold at 
a sensor location. The sensor threshold was a fixed value, 0.03 mg/ 
m3 [15], for all sensor system designs. Total occupant exposure, £<<, 
for the kth releasing location is defined as [14]: 

S tdet-k 
Ek = £ £Exp(m,t) (2) 

m=1 t=0 
where Exp(m, r) is the occupant exposure for the mth occupant at 
time t and S is the number of occupants. For each occupant, the 
exposure is the total inhaled concentration up to the time when the 
sensor alarms, i.e., when the contaminant concentration measured 
reaches the sensor threshold at the sensor location, 

5 tdet-fc 
^ = £ £ S - C ( m , t ) (3) 

m=l t=0 

where B is the inhalation rate, which was assumed to be constant 
for all occupants and all times, and C(m,t) the local concentration at 
each occupant location. Thus, for all N releasing locations, the 
objective function based on total occupant exposure,JeKp, is defined 
as [14]: 

N 

Jexp = £ p , < x Ek (4) 
/<=1 

Occupant exposures were evaluated at different locations in 
each test space (Fig. 4). In the small office, exposures were evalu-
ated at opposite corners of the space. In the large hall, four expo-
sures were evenly distributed throughout the space. Finally, in the 
office suite, one occupant exposure was evaluated in each of the 
three offices, Hallway 2, and the Common Area. All occupant 
exposures were evaluated at the breathing level. 

The candidate sensor locations for which the contaminant 
concentration did not reach the sensor sensitivity within the 
simulation time period were penalized with a value of 1000 for 
both detection time and occupant exposure. A penalty of 1000 was 
used since it is at least an order of magnitude greater than the time 
for which concentration data is available. If the penalty value were 
set to be a value other than 1000, some reported objective function 
values would change (those with a value larger than 100). However, 
as long as the penalty value is greater than the time for which 
concentration data is available, the results of this study would not 
change. 

Previous work by the authors showed that when the sensor 
quantity is equal to the number of releasing locations, numerous 
sensor systems exist [14]. In other words, no unique sensor system 
would exist. Therefore, this study evaluated the performance of 
sensor systems with sensor quantities less than the number of 
releasing locations. 

Tables 2 - 7 summarize the sensor systems designed using 
multizone and zonal model data for each test space. The concepts of 
multizone-optimal, zonal-optimal, CFD-optimal, and CFD-bench-
marked objective function values were introduced in Section 2. The 
"Objective function" column in these tables refers to the design 
objective of the sensor systems designed using contaminant 
dispersion data simulated either by multizone or zonal models. 
Since minimizing detection time did not always guarantee that 
occupant exposure was also minimized and vice versa, a "comple-
mentary" objective function value was defined (denoted in paren-
thesis). They refer to the occupant exposure when "D" was the 
objective function used to design the sensor system or detection 
time when "£" was the objective function value used. 

The column "Locations using CFD data" are the sensor locations 
designed using CFD data alone (Tables 4-7). Some of these locations 
are also shown in Fig. 6. The last column indicates whether or not 
the CFD-benchmarked objective function value for each sensor 
system was equivalent to the CFD-optimal value for the same 
number of sensors. A "Y" indicates that the two values were 
equivalent, and thus the sensor system designed using data from 
the simpler airflow model could perform just as well as one 
designed using more accurate CFD data. A "Y" also indicates that 
the sensor locations designed using either multizone or zonal 
model data were the same as those designed using CFD data. 

If there is one and only one sensor system that gives the minimum 
objective function value, that sensor system is given the description 
"unique". They are marked with an "*" in Tables 2, 6 and 7. If 
there are multiple-sensor systems that give the same minimum 
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Table 2 
Sensor des ign for smal l off ice us ing m u l t i z o n e m o d e l da ta . 

Sensor sys. des ign Sens, q ty Obj. func . Locations us ing m u l t i z o n e d a t a Objec t ive func t ion va lue Col. (6] equiv. to | 7 | ? 

M u l t i z o n e - o p t i m a l C F D - b e n c h m a r k e d CFD-opt imal 

m 12] 131 [4] 151 [SI [7] [81 

i 2 D 211 ,342 1.0 1.0 1.0 Y 
E 6 .18e -5 1 .34e-3 1 .34e-3 Y 

2 1 D 341* 1.0 1.0 1.0 Y 
E 6 .18e -5 1 .34e-3 1 .34e -3 Y 

Eng 1 D 5 4 4 1.75 1.0 1.0 Y 
E 1 .10e-4 1 .34e-3 1 .34e-3 Y 

Note (appl ies to Tables 2 - 7 ) : "D" indica tes a d e t e c t i o n t i m e objec t ive f u n c t i o n a n d is in un i t s of m inu t e s . "£" ind ica tes an o c c u p a n t e x p o s u r e ob jec t ive func t ion a n d is in un i t s of 
kg/kg. An "*" indica tes a u n i q u e senso r sys t em. "Eng" indica tes a c o m m o n e n g i n e e r i n g des ign pract ice . 

objective function value, only one of the possible sensor systems is 
listed in Tables 2-7. The one listed was chosen based on similarity to 
the sensor systems designed using data from the other airflow 
models, thus allowing for a clearer comparison. In general, some 1-
sensor systems were found to be unique in this study, while 
multiple-sensor systems were found to be non-unique. 

6.1. Results for small office 

Tables 2 and 3 summarize the sensor systems designed using 
the multizone and zonal model data, respectively, for the small 
office. Sensor sys. designs 1 - 2 were designed in this study during 
the optimization process. Sensor sys. "Eng" is one sensor placed at 
the exhaust, which is a common engineering design practice [16]. 
Because the sensor systems tha t were designed to minimize 
detection t ime also minimized occupant exposure, only one sensor 
system is listed for each sensor quantity. As indicated in Tables 2 
and 3, even as the total number of sensors decreased, the multi-
zone-, zonal-, and CFD-optimal detection times and occupant 
exposures remained the same value. The CFD-benchmarked 
objective function values were equivalent to the CFD-optimal 
values for all sensor systems, whe the r designed using multizone or 
zonal model data. Thus, it could be concluded that a sensor system 
designed using data from a simpler airflow model could perform 
just as well as one designed using more accurate CFD data for this 
small office. 

Since neither the multizone-, zonal-, nor CFD-optimal detection 
times and occupant exposures changed when the number of 
sensors was reduced from two to one, it could also be concluded 
that the optimal number of sensors for the small office is one. Using 
both multizone and zonal model data, this location was near the 
exhaust, but not directly under the exhaust (subzone 341). The 
location for a 1-sensor system designed using CFD data was also 
subzone 341 (Tables 2 and 3). 

Common engineering design practice is to place a single sensor 
under the exhaust since most of the air inside a room will return to 

the exhaust (Sensor sys. Eng). Tables 2 and 3 indicate that using 
multizone and zonal model data, respectively, the objective 
function values calculated at this location were greater than the 
multizone- and zonal-optimal values for a 1-sensor system. 
Nevertheless, the objective function value calculated at this loca-
tion using CFD data is equivalent to the CFD-optimal value for 
a 1-sensor system. Thus, using CFD data for sensor system design 
shows that the common engineering design practice of placing 
a sensor at the exhaust for a small office is optimal. 

6.2. Results for large hall 

Procedures for determining sensor systems for the large hall 
were similar to those used for the small office. Tables 4 and 5 
summarize the sensor systems designed using the multizone and 
zonal model data, respectively, for the large hall. As the number of 
sensors decreased, the multizone-, zonal- and CFD-optimal detec-
tion times and occupant exposures increased. However, for the 
1-sensor systems, the mult izone- and zonal-optimal objective 
function values were much higher than the respective values for 
the 2-, 3-, and 4-sensor systems. This was due to the penalty of 
a value of 1000 for candidate sensor locations where contaminant 
concentrations did not reach the sensor threshold during at least 
one of the contaminant releases. As discussed earlier, as long as the 
penalty value is greater than the t ime for which concentration data 
is available, the results of this study would not change. 

Fig. 6a shows that for the 2- and 3-sensor systems designed 
using either multizone (black-filled box) or zonal model data (gray-
filled box), the sensor locations were close to the locations designed 
using CFD data (hashed box). Nevertheless, the CFD-benchmarked 
values were not equivalent to the CFD-optimal values for any of the 
sensor systems listed, except the 4-sensor systems, whe ther 
designed using multizone or zonal model data. As the number of 
sensors was reduced, data f rom the simpler airflow models was less 
appropriate for sensor system design in the case of the large hall. 
The inherent differences in the airflow models, and thus 

Table 3 
Sensor des ign for smal l off ice us ing zonal m o d e l da ta . 

Sensor sys. des ign Sens, q t y Obj. func . Locations us ing m u l t i z o n e d a t a Objec t ive func t ion va lue Col. [6] equiv . to [7]? 

M u l t i z o n e - o p t i m a l C F D - b e n c h m a r k e d CFD-opt imal 

m [21 [31 [4] [51 [61 [71 [SJ 

i 2 D 4 4 3 . 5 2 3 1.0 1.0 1.0 Y 
£ 5 .65e-6 1 .34e-3 1 .34e-3 Y 

2 1 D 341 1.0 1.0 1.0 Y 
E 5.65e-5 1 .34e-3 1 .34e-3 Y 

Eng 1 D 5 4 4 1.5 1.0 1.0 Y 
E 9 .15e -5 1 .34e-3 1 .34e-3 Y 
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Table 4 
Sensor des ign for large hall u s ing m u l t i z o n e m o d e l da t a . 

Sensor Sens. Obj. func . Locations Object ive func t ion va lue ( c o m p l e m e n t a r y obj . func. va lue ) Locations Col. [6] equiv . 
sys. des ign qty us ing zonal d a t a 

Mul t i zone -op t ima l C F D - b e n c h m a r k e d CFD-opt imal 
us ing CFD da ta to [71? 

(11 [21 [3] [41 [51 IS] [71 [8] [91 

1 4 D 211 ,394 ,411 ,571 1.4 (5 .30e-6) 1.0 1.0 211 ,394 ,411 ,571 Y 
2 4 E 222 ,481 ,554 ,571 5 .30e-6 (2.2) 1 .08e-4 1 .08e-4 222 ,481 ,554 ,571 Y 
3 3 D 211 ,392 ,571 1.6 (5 .30e-6) 1.2 1.0 386 ,422 ,662 N ( + 0 . 2 ) 
4 3 £ 121,471,541 4 .04e-6 (2.8) l . l l e - 4 1 .08e-4 N ( + 3 e - 6 ) 
5 2 D 211 ,481 2.2 (8 .12e-6) 1.6 1.0 222 ,592 N ( + 0 . 6 ) 
6 2 E 211 ,471 5.41 e - 6 (2.4) 2 . 0 0 e - 4 1 .08e-4 N ( + 9 e - 5 ) 
7 1 D 4 7 1 2 0 0 1.9 1.4 552 N ( + 0 . 5 ) 

E 2 0 0 2 . 3 0 e - 4 1 .09e-4 N ( + l e - 4 ) 

Eng-1 4 D 116 ,916 ,196 ,996 8.0 1.6 1.0 211 ,394 ,411 ,571 N ( + 0 . 6 ) 
E 7.29e-5 1 . 9 8 e ^ 1 .08e-4 N ( + 9 e - 5 ) 

Eng-2 1 D 551 4 0 0 1.6 1.4 552 N ( + 0 . 2 ) 
E 4 0 0 1 .66e-4 1 .09e-4 N ( + 6 e - 5 ) 

Eng-3 1 D 5 5 6 1000 1.8 1.4 N ( + 0 . 4 ) 
E 1000 1 .97e-4 1 .09e-4 N ( + 9 e - 5 ) 

contaminant transport and detection time, could be compensated 
for when the number of sensors was relatively large. More sensors 
increased the likelihood that at least one of the sensors in a system 
designed using data from a simpler airflow model would be able to 
detect each contaminant release with the same detection time as 
a sensor system designed using CFD data. The reduction in the 
number of sensors placed more weight on each sensor location in 
determining the detection time of the entire sensor system. 
Differences in contaminant transport between the models would 
be amplified with the reduction of sensors. Thus, it could be 
concluded that a sensor system designed for the large hall using 
data from a simpler airflow model could perform just as well as one 
designed using more accurate CFD data when the total number of 
sensors exceeded a minimum value, i.e., 3 when using either 
multizone or zonal model data. 

When multizone model data was used to design sensor systems, 
one notices that the same occupant exposure could be expected 
from different detection times. Sensor sys.-l in Table 4 was 
designed to minimize detection time. The minimum detection time 
was 1.4 min for a 4-sensor system. Sensor sys.-2 was designed to 
minimize occupant exposure. Its detection time was 2.2 min for 
a 4-sensor system. Nevertheless, both the occupant exposures for 
Sensor sys.-l and 2 were equal (5.30e-6 kg/kg). This can be 
explained by the definition of occupant exposure (Eq. (3)), which 
depends on both the local inhaled concentration of each occupant 

and the detection time of each sensor in a sensor system. In many 
regions of the large hall, the airflow patterns calculated by the 
multizone model were in the opposite direction of those calculated 
by the zonal and CFD models. For instance, through release location 
2, the multizone model calculated more airflow moving along the 
walls (x = 0, x = 11 m) than up the middle (x = 5.5 m) (Fig. 7). This 
resulted in much of the contaminant leaving through two of the 
exhausts, which were located at x = 1.7 and x = 9.3 m. The 
contaminant was not distributed to the rest of the large hall and to 
the occupants. Thus, no matter the detection time of a sensor, the 
local concentration at each occupant was always 0 mg/m3, resulting 
in occupant exposure always being 0 kg/kg for release 2. Airflow 
results and subsequent occupant exposure values for release 3 were 
similar to those for release 2 and are not shown for brevity. Mini-
mizing occupant exposure could not guarantee that detection time 
was also minimized since occupant exposure is evaluated at each 
occupant and the detection time is evaluated at the sensors. 

In contrast, the zonal and CFD models calculated distribution of 
releases 2 and 3 to more areas of the large hall and the occupants 
than the multizone model. Thus, for each sensor location and for 
each release location, every detection time had a distinct value for 
occupant exposure. Thus, minimizing occupant exposure did 
guarantee that detection time was also minimized. 

When multizone model data was used to design sensor systems, 
one also notices that the lowest detection time for a specific 

Table 5 
Sensor des ign for large hall us ing zonal m o d e l da ta . 

Sensor sys. des ign Sens, q ty Obj. func . Locat ions us ing zonal da t a Object ive func t ion va lue Locat ions u s i n g CFD da ta Col. [6] equiv . to [7]? 

Zona l -op t ima l CFD-benchmarked CFD-opt imal 

[1] [2] [3] [41 [5] [61 [7] [8] [9] 

1 4 D 396 ,511 ,542 ,785 1.0 1.0 1.0 396 ,511 ,542 ,785 Y 
E 2 .68e -6 1 .08e-4 1 .08e-4 Y 

2 3 D 196,551 ,511 1.0 1.2 1.0 386 ,422 ,662 N (+0 .2) 
E 2 .68e -6 1 .96e-4 1 .08e-4 N ( + 9 e - 5 ) 

3 2 D 4 9 5 , 5 2 2 1.6 1.4 1.0 222 ,592 N (+0 .4 ) 
E 2 .73e -6 1 .98e-4 1 .08e-4 N ( + 9 e - 5 ) 

4 1 D 522 2 0 0 2 0 0 1.4 552 N ( + 2 0 0 ) 
E 2 0 0 2 0 0 1 .09e-4 N ( + 2 0 0 ) 

Eng-1 4 D 116 ,916 ,196 ,996 1.6 1.6 1.0 396 ,511 ,542 ,785 N (+0 .6 ) 
E 2 .70e -6 1 .98e-4 1 .08e-4 N ( + 9 e - 5 ) 

Eng-2 1 D 5 5 1 4 0 0 1.6 1.4 552 N (+0 .2 ) 
E 4 0 0 1 .66e-4 1 .09e-4 N ( + 6 e - 5 ) 

Eng-3 1 D 5 5 6 4 0 0 1.8 1.4 N (+0 .4 ) 
E 4 0 0 1 .97e-4 1 .09e-4 N ( + 9 e - 5 ) 
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Table 6 
Sensor des ign for off ice su i te us ing m u l t i z o n e m o d e l da ta . 

Sensor sys. Sens. Obj. Locations us ing m u l t i z o n e da ta Object ive func t ion value ( c o m p l e m e n t a r y Locations us ing CFD da ta Col. [7] equiv . to 
des ign q ty func . obj . func . va lue ) [7 | ? 

Mul t i zone - CFD- CFD-
o p t i m a l b e n c h m a r k e d o p t i m a l 

i n [2] [3] [4] [5) [6] [7] IS) [91 

i 5 D [1)321, [3)111, [H l ]511 , [H2J111, 1.0 1.0 1.0 [1)442, [3)411, [H1J511, [ H 2 ] l l l , Y 
E [C]331 1 .04e-5 3 .89e-3 3 .89e-3 [C]452 Y 

2 4 D [2)114, [3)511, [ H 2 ] l l l , [C]421 1.17 1.0 1.0 [2)114, [3)511. |H2)111 , [CJ421 Y 
E 1.05e-5 3 .89e-3 3 .89e-3 Y 

3 3 D [11342, [C1111, [H2J111 1.5 (2 .26e-5) 1.0 1.0 [1)342. [ C ] l l l , [ H 2 ] l l l Y 
4 3 E [3)511, [ H 2 ] l l l , [CJ451 1 .12e-5 (1.5) 3 .89e-3 3 .89e-3 [3]511, [ H 2 ] l l l , [C]451 Y 
5 2 D [3)221, [ H 2 ] l l l 2.0 (3 .00e-5) 2.17 1.0 [H2J121, [C]113 N ( + 1 . 1 7 ) 
6 2 E [ H21111, [C]131 1 .84e-5 (2.33) 4 .97e-3 3 .89e-3 [H2J121, [C] 112 N ( + l e - 3 ) 
7 1 D | 2 ) 1 1 3 168 168 1.5 [2)111- N ( + 1 6 8 ) 

E 1 6 8 168 4 .76e -3 N ( + 1 6 8 ) 

Eng 4 D [1)544, (2)444, [3)544, [ C ] l l l 168 168 1 .0 [2)114, [3)511, [ H 2 ) m , [CJ421 N ( + 1 6 8 ) 
E 168 168 3 .89e -3 N ( + 1 6 8 ) 

number of sensors did not guarantee the lowest occupant exposure. 
Sensor sys.-3 in Table 4 was designed to minimize detection time. 
The minimum detection time was 1.6 min for a 3-sensor system. 
Sensor sys.-4 was designed to minimize occupant exposure. Its 
detection time was 2.8 min for a 3-sensor system. Nevertheless, 
Sensor sys.-3 had a larger occupant exposure than Sensor sys.-4. 

The detection time of Sensor sys.-3, for each respective release, 
was 1.0, 2.0,1.0, 2.0, and 2.0. The detection time of Sensor sys.-4, for 
each respective release, was 1.0, 5.0, 4.0, 3.0, and 1.0. For release 1, 
the detection times were both 1.0 min, so the associated occupant 
exposure would be equal as well. As discussed above, no matter the 
detection time for releases 2 and 3, the occupant exposures were 
always 0 kg/kg because the local concentration at each occupant 
was always 0 mg/m3 . Thus, the only difference, with regards to the 
calculation of the occupant exposure, between these two sensor 
systems were the detection times for releases 4 and 5. They are 
respectively [2.0, 2.0 min] and [3.0, 1.0 min], for which the 
respective averages are both 2.0 min. The respective occupant 
exposures are [1.49e-7, 8.24e-6 kg/kg] and [6.96e-7,1.40e-6 kg/kg], 
for which the respective averages are 4.19e-5 and 1.05e-6 kg/kg. 
This demonstrates that even if the overall detection time were 
minimized, the local concentration at each occupant for each 
respective release determines whether or not the occupant expo-
sure is also minimized. Therefore, if more than one combination of 
individual detection times can result in the same overall detection 

time, minimizing occupant exposure cannot be guaranteed. 
Therefore, both minimizing detection time and occupant exposure, 
along with other possible design criteria, should be considered 
when designing sensor systems in order to ensure that occupants 
are being protected. 

Sensors are typically placed near exhausts for contaminant 
detection since most of the air inside a room will return to the 
exhaust. Therefore, the locations of the four exhausts in the large 
hall were selected as a 4-sensor system (Sensor sys. Eng-1). The 
detection times calculated using multizone, zonal, and CFD model 
data for Sensor sys. Eng-1 were greater than the respective optimal 
values for a 4-sensor system. Thus, it could be concluded that 
Sensor sys. Eng-1 is not an optimal one. Two more possible engi-
neering design practices were tested. Sensor sys. Eng-2 was a 1-
sensor system with a sensor placed in the center of the large hall on 
the floor. Sensor sys. Eng-3 was a 1-sensor system with a sensor 
placed in the center of the large hall on the ceiling. The detection 
times calculated using multizone, zonal, and CFD model data for 
Sensor sys. Eng-2 and 3 were greater than the respective optimal 
values for a 1-sensor system. Nevertheless, for Sensor sys. Eng-2 
and 3, the CFD-benchmarked objective function values were no 
more than 30 s greater for detection time and no more than l e -
4 kg/kg greater for occupant exposure. As more data on the risk of 
exposure to CBW agents becomes available, how these differences 
could affect actual building occupants should be evaluated. 

Table 7 
Sensor des ign for off ice sui te us ing zonal m o d e l da t a . 

Sensor Sens, q ty Obj. func . Locations u s i n g zonal da t a Object ive f u n c t i o n va lue Locat ions u s i n g CFD d a t a Col. [7] equiv. to [8]? 
sys. des ign 

Zona l -op t ima l CFD-benchmarked CFD-optimal 

[ U [2] [3] [41 [5] [6) [7) [8] [9] 

1 5 D [1)542, [3)141, [H2J111, 1.0 1.0 1.0 [1)542, [3)141, [H2J111. Y 
[ C ) l l l [C]341 [ C ) l l l , [C]341 

E 1.28e-5 3 .89e -3 3 .89e-3 Y 
2 4 D [1)531, [3)411, 1.0 1.0 1.0 [1)531, [3)411, )H2)111, [C]211 Y 

E [H2J111, [C]211 1 .28e-5 3 .89e-3 3 .89e-3 Y 
3 3 D [3)411 [ H 2 [ l l l [C]552 1.17 1.0 1.0 [3)411. [H2J111, [CJ552 Y 

E 1.29e-5 3 .89e -3 3 .89e-3 Y 
4 2 D [H2J111 [C]552 1.33 1.0 1.0 [ H 2 ) l l l , [C]552, Y 

E 1.49e-5 3 .89e-3 3 .89e-3 Y 
5 1 D [C]551 168 168 1.5 [2)111* N ( + 1 6 8 ) 

E 168 168 4 .76e-3 N ( + 1 6 8 ) 

Eng 4 D [1)544, [2)444, 168 168 1.0 [2)114, [3)511, [H2J111, [CJ421 N ( + 1 6 8 ) 
E [3)544, [ C ] l l l 168 168 3 .89e-3 N ( + 1 6 8 ) 
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Locations using multizone model data 
Locations using zonal model data 
Locations using CFD model data 

Large hall Office suite 

Fig. 6. Sensor systems designed using mult izone, zonal, and CFD data for (a) large hall and (b) office suite. Number - l e t t e r des ignat ion refers to total n u m b e r of sensors and design 
objective (D = minimize detect ion t ime, E - min imize occupant exposure, D/E=location for both minimizing detect ion t ime and occupant exposure are the same). Locations f rom 
Tables 4-7 . Note 1: 2 -sensor sys tems designed using zonal and CFD model data overlap in plan v iew and are a t t he s a m e he ight above the floor. Note 2: 1 -sensor system designed 
using mult izone and CFD model data overlap in plan view. Location designed using mul t izone model data a t y = 1.6. Location des igned using CFD model data at y = 0. 

6.3. Results for office suite 

Procedures for determining sensor systems for the office suite 
were similar to those used for the small office and large hall. Tables 
6 and 7 summarize the sensor systems designed using the multi-
zone and zonal model data, respectively, for the office suite. The 
number in brackets before the subzone number indicates the room 
in which the sensor is located (see Table 1). For instance, [1]111 
means Office 1, subzone 111. [H] indicates the hallway, and [C] 
indicates the Common Area. 

Similar to the large hall, as the number of sensors was reduced, 
data f rom the simpler airflow models was less appropriate for 
sensor system design in the case of the office suite. Further, even 
sensor systems designed either using multizone or zonal model 
data that were similar to those designed using CFD data did not 
result in equivalent objective function values (Fig. 6b). For the 

2-sensor system designed using multizone model data, each loca-
tion designed using multizone model data (black-filled box) was 
close to the locations designed using CFD data (hashed box). Note 
that the locations designed using zonal model data overlapped 
with those designed using CFD data for the 2-sensor systems. Thus, 
it could be concluded tha t a sensor system designed for the office 
suite using data f rom a simpler airflow model could perform jus t as 
well as one designed using more accurate CFD data when the total 
number of sensors exceeded a min imum value, i.e., 2 when using 
multizone model data and 1 w h e n using zonal model data. 

Also similar to the large hall, w h e n multizone model data was 
used to design the sensor systems for the office suite, minimizing 
occupant exposure could not always guarantee that detection t ime 
was also minimized. The multizone model did not calculate 
distribution of release 4 to the rest of the office suite, and thus no 
contaminant reached the occupants. No mat ter the detection time, 

Distance along x (m) 

Multizone model 

• Zonal model 

0,10m/s 

'llllH 

CFD model 
«- 0.10 m/s 

• I! n 
ill 

Fig. 7. Resulting airf low pa t te rns f rom dif ferent airflow models th rough release 2 in t he large hall (no t to scale). 
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occupant exposure was always 0 kg/kg because the local concen-
tration at each occupant was always 0 mg/m3 for release 4. Thus, 
two different detection times could result in the same occupant 
exposure. 

The reason that minimizing detection time did guarantee 
occupant exposure for the 4- and 5-sensor systems in Table 6 was 
because the sensor systems reported are not unique. The reported 
4- and 5-sensor systems coincidentally minimized detection time 
and occupant exposure. Minimizing detection time did not guar-
antee minimization of occupant exposure for the 2- and 3-sensor 
systems for reasons similar to those for the large hall. Thus, addi-
tional constraints on the objective functions should be incorpo-
rated in order to utilize multizone model data for sensor system 
design irrespective of the test environment. 

Again, the locations of the four exhausts in the office suite were 
selected as a 4-sensor system (Sensor sys. Eng). The multizone-
optimal, zonal-optimal, and CFD-benchmarked detection time 
values for this 4-sensor system were all 168 min. These high values 
were due to the penalty of a value of 1000 and indicate that the 
designed sensor system could not detect a containment release for 
at least one of the releasing scenarios. The CFD-optimal value was 
1.0 min for any 4-sensor system. Thus, the 4-sensor system with 
sensors placed at the four exhausts is not an optimal design. 

7. Conclusions 

Indoor air sensor system design to protect a building from CBW 
attack was discussed in this study. Contaminant dispersion was 
simulated using multizone, zonal, and CFD airflow models for three 
test environments: a small office, a large hall, and an office suite. 
Four releasing locations were simulated in the small office, five in 
the large hall, and six in the office suite. GA was used to design the 
sensor systems that minimized either detection time or occupant 
exposure. This study sought to examine whether or not, despite 
inherent differences in airflow and contaminant dispersion results, 
data from a simpler airflow model could be used to design sensor 
systems capable of performing just as well as those designed using 
more accurate CFD data. It was found that (1) unless a unique 
sensor system is needed, sensor systems designed using data from 
simpler airflow models performed just as well as those designed 
using more accurate CFD data; and (2) additional constraints to the 
sensor system design problem should be incorporated in order to 
guarantee that when minimizing detection time, occupant expo-
sure is also minimized and vice versa, especially when using mul-
tizone model data to design sensor systems. 

Future work should study the limitations on the characteristics 
of a space (size, shape, layout, etc.) for which data from a multizone 
and/or zonal model can be used to design sensor systems capable of 
performing just as well as those designed using more accurate CFD 
data. This would involve a systematic approach by changing the 
various characteristics of a space and observing the performance of 
sensor systems designed using different airflow model data. 

Acknowledgements 

Support for this work has been provided by a National Science 
Foundation Graduate Research Fellowship. 

References 

[1] Mora L, Gadgil AJ, W u r t z E. C o m p a r i n g zonal and CFD m o d e l p red ic t ions of 
i so the rma l indoor a i r f lows to e x p e r i m e n t a l da ta . Indoor Air 2 0 0 3 ; 1 3 ( 2 ) : 7 7 -
85. 

[2] Arvelo J, Brand t A, Roger RP, Saksena A. An e n h a n c e d m u l t i z o n e m o d e l and its 
app l ica t ion to o p t i m u m p l a c e m e n t of CBW sensors . ASHRAE Transac t ions 
2 0 0 2 ; 1 0 8 ( 2 ) : 8 1 8 - 2 5 . 

(3 ] Zhai Z, Srebric J, Chen Q, Appl ica t ion of CFD to p red ic t a n d con t ro l chemica l 
a n d biological a g e n t d i spe r s ion in bui ld ings . In te rna t iona l Journa l of Vent i la-
t ion 2 0 0 3 ; 2 ( 3 ) : 2 5 1 - 6 4 . 

[4] Zhang TF, Chen Q, Lin C- H. Op t ima l s e n s o r p l a c e m e n t for a i r b o r n e c o n t a m i -
n a n t d e t e c t i o n in a n a i rcraf t cabin . HVACSiR Research 2 0 0 7 ; 1 3 ( 5 ) : 6 8 3 - 9 6 . 

[5] C h e n YL, W e n J. Appl ica t ion of zona l m o d e l on indoor air s enso r n e t w o r k 
des ign. In: P roceed ings of s e n s o r s a n d s m a r t s t r uc tu r e s t echno log ies for civil, 
mechan ica l , and a e r o s p a c e sys t ems . San Diego, CA: SPIE; 2 0 0 7 [6529]. 

[6] Feustal HE, Smi th BV. COMIS 3 .0 -use r ' s guide . Lawrence Berkeley National 
Laboratory; 1997. 

[7] Ren Z, S t ewar t J. COwZ user ' s gu ide : zonal i n d o o r source emiss ion a n d 
d i spe r s ion mode l , ve r s ion 1. The School of C o m p u t e r Science a n d QUESTOR 
Centre ; 2003 . 

[8] FLUENT. Airpak 2.1 user ' s gu ide . F luent Inc; 2 0 0 2 . 
[9] W u r t z E, Nataf J-M, W i n k e l m a n n F. T w o - and t h r e e - d i m e n s i o n a l na tu ra l and 

mixed convec t ion s imu la t ion us ing m o d u l a r zonal m o d e l s in bui ldings . 
In te rna t iona l Journa l of Hea t a n d Mass Transfer 1999;42(5) :923 . 

[10] Ren Z. E n h a n c e d m o d e l l i n g of i n d o o r air f lows, t e m p e r a t u r e s , po l lu t an t 
emi s s ion a n d d i spers ion by n e s t i n g s u b - z o n e s w i t h i n a m u l t i z o n e mode l . The 
Uni ted Kingdom: Q u e e n ' s Universi ty; 2 0 0 2 . 

[11 ] Chen Q, Xu W. Ze ro -equa t i on t u r b u l e n c e m o d e l for i n d o o r a i r f low s imula t ion . 
Energy a n d Buildings 1998;28(2) : 1 3 7 - 4 4 . 

[12] ASHRAE. 1995 ASHRAE h a n d b o o k HVAC appl ica t ions . Amer ican Society of 
Heat ing, Ref r igera t ing a n d Air -Condi t ioning Engineers ; 1995. 

[13] M a t h w o r k s . Genet ic a l g o r i t h m a n d d i rec t sea rch toolbox. The M a t h w o r k s Inc.; 
2 0 0 4 . 

[14] Chen YL, W e n J. Sensor s y s t e m des ign for bu i ld ing i n d o o r air p ro tec t ion . 
Building a n d E n v i r o n m e n t 2 0 0 8 ; 4 3 ( 7 ) : 1 2 7 8 - 8 5 . 

[15J Ins t i tu te of Medic ine . Chemical a n d biological t e r ro r i sm - r e sea rch a n d 
d e v e l o p m e n t to i m p r o v e civilian medica l r e sponse . Wash ing ton , D.C.: Nat ional 
Academies Press; 1999. 

[16] Schell M, In t -Hout D. D e m a n d con t ro l ven t i l a t ion us ing C0 2 . ASHRAE Journa l 
2001 February 2 0 0 1 : 1 8 - 2 9 . 



www.manaraa.com

228 

APPENDIX B Sensor system design results for Test Cases in Chapter 2 

Figure B-l to Figure B-22 are contaminant contour plots for each test case 

simulated using three airflow models for Zone A[-], which had the ceiling-mounted 

diffuser and exhaust, for each release number. Contour plots are shown for t = 1.0 min 

and 3.0 min. They illustrate the differences between the contaminant transport calculated 

by each of the three airflow models. 

They also demonstrate: (1) only for release #1 was at least one occupant exposed 

to the contaminant when simulated with either the multizone or zonal model. Note that 

even though the contour lines may fall within the subzone of an occupant, the 

concentration there was always zero; (2) no matter the release location, at least one 

occupant was exposed to the contaminant when simulated with the CFD model; and (3) 

differences between the contaminant transport calculated by each of the three airflow 

models. 

Contour plots for selected test cases were reported in Chapter 2 and will not be 

repeated here. Contour plots for Test Case 1, Release #3 on page 77. Contour plots for 

Test Case 7, Release #1 on page 83. 
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HI Contaminant release 

© Occupant exposure 

* Symbols for F igure B - l to Figure B-22. 

x 3.7 m 

(e) t= 1.0 min 

x 3.7 m 

(f)t= 3.0 min 

Figure B-l. Contaminant contour plots for Test Case 1, Release #1 
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(c) t = 1.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

(d) t = 3.0 min 
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0 x 3.7 m 

(f) t= 3.0 min 

Figure B-2. Contaminant contour plots for Test Case 1, Release #2 
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(c) f = 1.0 min 
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N-
cri 

/ / f t 

0 x 3.7 m 

(e) t = 1.0 min 

(d) t= 3.0 min 

x 3.7 m 

(f) f = 3.0 min 

Figure B-3. Contaminant contour plots for Test Case 1, Release #4 
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(c ) f=1 .0min (d ) f=3 .0min 

0 x 3.7m 0 x 3.7m 

(e ) f=1 .0min ( f ) f=3 .0min 

Figure B-4. Contaminant contour plots for Test Case 2, Release #1 
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(c) t = 1.0 min 
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(e) t = 1.0 min 
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(f) f = 3.0 min 

Figure B-5. Contaminant contour plots for Test Case 2, Release #2 
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(a) t = 1.0 min (b) t = 3.0 min 

(c) f = 1.0 min 

x 3.7 m 

(e) t = 1.0 min 

(d) f = 3.0 min 

x 3.7 m 

( f) t = 3.0 min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(c) f = 1.0 min 

3.7 m 

(e)t= 1.0 min 

(d) t = 3.0 min 

0 x 3.7 m 

(f) t= 3.0 min 

Figure B-7. Contaminant contour plots for Test Case 2, Release #4 
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Figure B-8. Contaminant contour plots for Test Case 5, Release #1 
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(c) t= 1.0 min 

0 x 3.7 m 

(e) f = 1.0 min 

(d) t = 3.0 min 

x 3.7 m 

(f) t = 3.0 min 

Figure B-9. Contaminant contour plots for Test Case 5, Release #2 
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Figure B-10. Contaminant contour plots for Test Case 5, Release #3 
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(c) f = 1.0 min (d ) f=3 .0min 
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Figure B- l l . Contaminant contour plots for Test Case 5, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

0 x 3.7 m 0 x 3.7 m 

(e ) f=1 .0min ( f ) f=3 .0min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 



www.manaraa.com

241 

(c) t= 1.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

(d) f = 3.0 min 

0 x 3.7 m 

(f) f = 3.0 min 

Figure B-13. Contaminant contour plots for Test Case 6, Release #2 
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Figure B-14. Contaminant contour plots for Test Case 6, Release #3 
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(c) f = 1.0 min (d)f = 3.0min 

x 3.7 m 

(e) t = 1.0 min 

x 3.7 m 

(f) f= 3.0 min 

Figure B-15. Contaminant contour plots for Test Case 6, Release #4 
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(c) f = 1.0 min (d ) f=3 .0min 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-16. Contaminant contour plots for Test Case 7, Release #1 



www.manaraa.com

(a) t = 1.0 min (b) t = 3.0 min 

0 x 3.7m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(c) t = 1.0 min 

x 3.7 m 

(e) f = 1.0 min 

(d) t = 3.0 min 

0 x 3.7 m 

(f) t = 3.0 min 

Figure B-18. Contaminant contour plots for Test Case 7, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

0 x 3.7m 0 x 3.7m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

(c ) f=1 .0min (d ) f=3 .0min 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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Figure B-21. Contaminant contour plots for Test Case 8, Release #3 
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x 3.7 m 

(e) f = 1.0 min 

x 3.7 m 

(f) t= 3.0 min 

Figure B-22. Contaminant contour plots for Test Case 8, Release #4 
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Figure B-23 to Figure B-46 are contaminant contour plots for each test case 

simulated using three airflow models for Zone A[+], which had the wall-mounted diffuser 

and exhaust, for each release number. Contour plots are shown for t = 1.0 min and 3.0 

min. They illustrate the differences between the contaminant transport calculated by each 

of the three airflow models. 

They also demonstrate: (1) only for release #1 was at least one occupant exposed 

to the contaminant when simulated with either the multizone or zonal model. Note that 

even though the contour lines may fall within the subzone of an occupant, the 

concentration there was always zero; (2) no matter the release location, at least one 

occupant was exposed to the contaminant when simulated with the CFD model; and (3) 

CFD model data indicates that every subzone location is an optimal sensor location, 

except for the cases where furniture is placed below the diffuser (Test Cases 15 and 16); 

and (4) differences between the contaminant transport calculated by each of the three 

airflow models. 
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(a) t = 1.0 min (b) t = 3.0 min 

(c) t = 1.0 min (d) t = 3.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

0 x 3.7m 

(f) t= 3.0 min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(c) t = 1.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

(d) t = 3.0 min 
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Figure B-24. Contaminant contour plots for Test Case 9, Release #2 
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(c) ? = 1.0 min (d)f = 3.0min 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-25. Contaminant contour plots for Test Case 9, Release #3 
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(a) t = 1.0 min 
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Figure B-26. Contaminant contour plots for Test Case 9, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

(c) t = 1.0 min (d) f = 3.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

0 x 3.7m 

(f) t = 3.0 min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

(c) t = 1.0 min (d) t = 3.0 min 

0 x 3.7 m 

(e) f = 1.0 min 

0 x 3.7 m 

(f) t= 3.0 min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(a) t = 1.0 min (b) t = 3.0 min 

(c) t = 1.0 min 

0 x 3.7 m 

(e) t = 1.0 min 

(d) f = 3.0 min 

£ 
K. 
00 

0 x 3.7 m 
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Figure B-29. Contaminant contour plots for Test Case 10, Release #3 
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Figure B-30. Contaminant contour plots for Test Case 10, Release #4 



www.manaraa.com

© 

(a) t = 1.0 min (b) t = 3.0 min 

(c) f = 1.0 min (d) t = 3.0 min 

x 3.7 m 

(e) f= 1.0 min 

0 x 3.7 m 

(f) t= 3.0 min 

Figure B-31. Contaminant contour plots for Test Case 13, Release #1 
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Figure B-32. Contaminant contour plots for Test Case 13, Release #2 
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(a) t = 1.0 min (b) t = 3.0 min 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(c) t = 1.0 min 

x 3.7 m 

(e) f = 1.0 min 

(d) t= 3.0 min 

x 3.7 m 

(f) t= 3.0 min 

Figure B-34. Contaminant contour plots for Test Case 13, Release #4 
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x 3.7 m 

(e) t= 1.0 min 

x 3.7 m 

(f) f = 3.0 min 

Figure B-35. Contaminant contour plots for Test Case 14, Release #1 
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Figure B-36. Contaminant contour plots for Test Case 14, Release #2 
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Figure B-37. Contaminant contour plots for Test Case 14, Release #3 
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Figure B-38. Contaminant contour plots for Test Case 14, Release #4 
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(a) t = 1.0 min 

(c) t = 1.0 min 
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(e) t = 1.0 min 

(b) t= 3.0 min 

(d) t = 3.0 min 
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(f) t= 3.0 min 

Figure B-39. Contaminant contour plots for Test Case 15, Release #1 
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Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(a) t= 1.0 min ( b ) f = 3 . 0 m i n 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f = 3 . 0 m i n 

Figure B-41. Contaminant contour plots for Test Case 15, Release #3 
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(a) t = 1.0 min (b) t = 3.0 min 
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Figure B-42. Contaminant contour plots for Test Case 15, Release #4 
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(c) f = 1.0 min (d ) f=3 .0min 

0 x 3.7 m 0 x 3.7 m 

(e) f = 1.0 min ( f ) f=3 .0min 

Figure B-31. Contaminant contour plots for Test Case 13, Release #1 
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x 3.7 m 

(e) t= 1.0 min 

x 3.7 m 

( f) t = 3.0 min 

Figure B-44. Contaminant contour plots for Test Case 16, Release #2 
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(a) f = 1.0 min 

J f e : 

(c) t = 1.0 min 

3.7 m 

(b) t = 3.0 min 

(d) t = 3.0 min 

(e) t = 1.0 min 

x 3.7 m 

(f) t = 3.0 min 

Figure B-45. Contaminant contour plots for Test Case 16, Release #3 
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(f)t=Z.Q min 

Figure B-46. Contaminant contour plots for Test Case 16, Release #4 
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Figure B-47 to Figure B-54 compares the respective test cases for each test zone 

with infiltration. There is a figure for each contaminant release (#1 to #4). They are 

shown for / = 1.0 min. In general, contaminant transport is greater for the test cases with 

the wall-mounted diffuser. Though not obviously apparent from observing the figures, 

every subzone location was an optimal sensor location for the test cases with the wall-

mounted diffuser, except for Test Cases 15 and 16 (both furniture under the diffuser). 

Further, the test cases with infiltration showed less effective contaminant transport 

than the test casse without infiltration. The test cases with furniture under the exhaust 

show more effective (or about the same) contaminant transport that the test cases with no 

furniture. Lastly, the test cases with furniture under the diffuser show less effective 

contaminant transport that the test cases with no furniture (except for Release #4 since it 

was close to the exhaust. Its transport was not as affected by furniture under the diffuser). 
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(a) Test Case 2 (b) Test Case 10 

0 x 3.7m 

(e) Test Case 7 

Ceiling-mounted diffuser 

0 x 3.7 m 

(e) Test Case 15 

Wall-mounted diffuser 

Figure B-47. Contaminant contour plots for Release #1 without infiltration 
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(a) Test Case 2 

0 x 3.7 m 

(e) Test Case 8 

Ceiling-mounted diffuser 

(b) Test Case 10 

(d) Test Case 14 

0 x 3.7 m 

(e) Test Case 16 

Wall-mounted diffuser 

Figure B-48. Contaminant contour plots for Release #1 without infiltration 
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(a) Test Case 2 (b) Test Case 10 

(c) Test Case 5 

0 x 3.7 m 

(e) Test Case 7 

Ceiling-mounted diffuser 

(d) Test Case 13 

0 x 3.7 m 

(e) Test Case 15 

Wall-mounted diffuser 

Figure B-49. Contaminant contour plots for Release #1 without infiltration 
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Figure B-50 . C o n t a m i n a n t contour plots for Re lease #2 wi th infi l tration 
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(a) Test Case 2 (b) Test Case 10 

\ \ 

(c) Test Case 5 

0 x 3.7 m 

(e) Test Case 7 

Ceiling-mounted diffuser 

(d) Test Case 13 

0 x 3.7 m 

(e) Test Case 15 

Wall-mounted diffuser 

Figure B-51. Contaminant contour plots for Release #1 without infiltration 
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(a) Test Case 2 (b) Test Case 10 

0 x 3.7 m 

(e) Test Case 8 

Ceiling-mounted diffuser 

(d) Test Case 14 

0 x 3.7 m 

(e) Test Case 16 

Wall-mounted diffuser 

Figure B-52. Contaminant contour plots for Release #1 without infiltration 
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(a) Test Case 2 (b) Test Case 10 

(c) Test Case 5 
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(e) Test Case 7 

Ceiling-mounted diffuser 
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(d) Test Case 13 
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(e) Test Case 15 

Wall-mounted diffuser 

Figure B-53. Contaminant contour plots for Release #1 without infiltration 
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(a) Test Case 2 

(c) Test Case 6 

o s 
IV. 
CO 

N 

o 
I. i • 

0 x 3.7 m 

(e) Test Case 8 
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(b) Test Case 10 

(d) Test Case 14 
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(e) Test Case 16 

Wall-mounted diffuser 

Figure B-54. Contaminant contour plots for Release #4 with infiltration 
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Table B-l to Table B-8 summarize the sensor systems designed using the simpler 

airflow models for each test case simulated for zone A[-], £[-], which has the ceiling-

mounted diffuser and exhaust. 

Tables for selected test cases were reported in Chapter 2 and will not be repeated 

here. Sensor system designs for Test Case 1 using multizone and zonal model data are 

given on page 75 and 75, respectively. Those for Test Case 7 using multizone and zonal 

model data are given on page 80 and80, respectively. 
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Table B-ll. Sensor system designs for Test Case 13 using multizone model data. 

Sensor Qty 

[2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) Locations 
using 

CFD data 

[8] 

Col. 
[6] 

sys. 

[1] 

Qty 

[2] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

equiv. 
to [7]? 

[9] 

1 4 D 231,351, 
445,535 

1.0 
(5.6e-8) 1.0 1.0 Y 

2 4 E 141,213, 
322,552 

5.6e-8 
(1.0) 9.5e-4 9.5e-4 Y 

3 3 D 151,331, 
442 

1.0 
(5.6e-8) 1.0 1.0 Y 

4 3 E 221,523, 
551 

5.6e-8 
(1,0) 

9.5e-4 9.5e-4 Y 

5 2 D 151,551 1.0 
(5.6e-8) 1.0 1.0 Y 

6 2 E 131,552 5.6e-8 
(1.0) 9.5e-4 9.5e-4 Y 

7 1 D 451* 1.25 
(9.8e-7) 1.5 1.0 252 N 

8 1 E 431 5.6e-8 
(500.5) 9.6e-4 9.5e-4 252 N 

Eng 1 D 
(E) 555 2.25 

(1,2e-5) 
1.5 

(1.1 e-3) 
1.0 

(9.5e-4) 255 N 

* unique sensor system 

Ta )le B-2. Sensor system designs for Test Case 2 using zona model data. 

Sensor Qty 

PI 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) Locations 
using 

CFD data 

[8] 

Col. 
[6] 

sys. 

[1] 

Qty 

PI 

func. 

(3] 

zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

equiv. 
to [7]? 

[9] 

1 4 D 114,212, 
324,453 

1.0 
(2.6e-6) 1.0 1.0 Y 

2 4 E 122,324, 
513,551 

2.6e-6 
(1.0) 9.5e-4 9.5e-4 Y 

3 3 D 112,355, 
553 

1.0 
(2.6e-6) 1.0 1.0 Y 

4 3 E 213,321, 
454 

2.6e-6 
(1.0) 9.5e-4 9.5e-4 Y 

5 2 D 132,452 1.0 
(2.6e-6) 1.0 1.0 Y 

6 2 E 214,554 2.6e-6 
(1-0) 9.5e-4 9.5e-4 Y 

7 1 D 451 or 
452* 

1.0 
(2.6e-6) 1.5 or 1.25 1.0 252 N 

8 1 E 451 or 
452 

2.6e-6 
(500.5) 

1.10e-3 or 
9.58e-4 9.6e-4 252 N 

Eng 1 D 
(E) 555 1.5 

(1.1 e-5) 
1.5 

(1.1 e-3) 
1.0 

(9.5e-4) 255 N 

* almost unique sensor system 
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Table B-3. Sensor system designs for Test Case 5 using multizone model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

1 4 D 112,341, 
453,523 

1.0 
(5.8e-8) 1.0 1.0 Y 

2 4 E 113,241, 
453,551 

5.8e-8 
(1.0) 9.95e-4 9.95e-4 Y 

3 3 D 152,411, 
541 

1.0 
(5.8e-8) 1.0 1.0 Y 

4 3 E 222,331, 
453 

5.8e-8 
(1.0) 9.95e-4 9.95e-4 Y 

5 2 D 131,552 1.0 
(5.8e-8) 1.0 1.0 Y 

6 2 E 211,452 5.8e-8 
(1.0) 9.95e-4 9.95e-4 Y 

7 1 D 451* 1.25 
(1,02e-6) 1.25 1.0 251 N 

8 1 E 431 5.8e-8 
(500.5) 1.0e-3 9.95e-4 251 N 

Eng 1 D 
(E) 555 2.25 

(1,2e-5) 
1.5 

(1,2e-3) 
1.0 

(9.95e-4) 355 N 

unique sensor system 

Ta )le B-4. Sensor system designs for Test Case 5 using zonal model data. 

Sensor 
sys. 

[1] 

Qty 

P] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

P] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 115,242, 
453,532 

1.0 
(2.6e-6) 1.0 1.0 Y 

2 4 E 121,132, 
243,552 

2.6e-6 
(1.0) 9.95e-4 9.95e-4 Y 

3 3 D 155,411, 
552 

1.0 
(2.6e-6) 1.0 1.0 Y 

4 3 E 142,453, 
211 

2.6e-6 
(1.0) 9.95e-4 9.95e-4 Y 

5 2 D 222,554 1.0 
{2.1 e-Q) 1.0 1.0 Y 

6 2 E 151,545 2.6e-6 
(1.0) 9.95e-4 9.95e-4 Y 

7 1 D 451 or 
452 

1.0 
(2.6e-6) 1.25 1.0 251 or 

252 N 

8 1 E 451 or 
452 

2.6e-6 
(500.5) 1.00e-3 9.95e-4 251 or 

252 N 

Eng 1 D 
<E> 555 1.5 

(1.1 e-5) 
1.5 

(1,2e-3) 
1.0 

(9.95e-4) 355 N 
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Table B-ll. Sensor system designs for Test Case 13 using multizone model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[61 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

1 4 D 152,344, 
431,543 

1.0 
(5.5e-8) 1.0 1.0 Y 

2 4 E 112,322, 
431,555 

5.5e-8 
(1.25) 1.0e-3 1 .Oe-3 Y 

3 3 D 141,412, 
453, 

1.0 
(5.5e-8) 1.0 1.0 Y 

4 3 E 121,452, 
541 

5.5e-8 
(1.25) 1.0e-3 1 .Oe-3 Y 

5 2 D 221,452 1.0 
(5.5e-8) 1.0 1.0 Y 

6 2 E 121,453 5.5e-8 
(1-25) 1.0e-3 1 .Oe-3 Y 

7 1 D 451* 1.25 
(9.7e-7) 1.25 1.0 252 N 

8 1 E 431 5.5e-8 
(500.5) 1.02e-3 1.0e-3 252 N 

Eng 1 D 
(E) 555 2.25 

(1.1 e-5) 
1.5 

(1.2e-3) 
1.0 

(1.0e-3) 255 N 

* unique sensor system 

Table B-6. Sensor system designs for Test Case 6 using zonal model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 115,252, 
452,533 

1.0 
(2.6e-6) 1.0 1.0 Y 

2 4 E 144,214, 
452,515 

2.6e-6 
(1.0) 1 .Oe-3 1.0e-3 Y 

3 3 D 112,155, 
542 

1.0 
(2.6e-6) 1.0 1.0 Y 

4 3 E 234,413, 
554 

2.6e-6 
(1.25) 1.0e-3 1.0e-3 Y 

5 2 D 113,552 1.0 
(2.6e-6) 1.0 1.0 Y 

6 2 E 125,455 2.6e-6 
(1.25) 1.0e-3 1 .Oe-3 Y 

7 1 D 451 or 
452* 

1.0 
(2.6e-6) 1.25 1.0 252 N 

8 1 E 451 or 
452 

2.6e-6 
(1.0) 1.02e-3 1.0e-3 252 N 

Eng 1 D 
(E) 

555 1.5 
(1.1 e-5) 

1.5 
(1,2e-3) 

1.0 
(1 .Oe-3) 255 N 

* almost unique sensor system 
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Table B-ll. Sensor system designs for Test Case 13 using multizone model data. 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Objective function value 
(complementary obj. func. value) Locations 

using 
CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

Sensor 
sys. 

[1] 

Qty 

[2] 

Obj. 
func. 

[3] 

Locations 
using 

multizone 
data 

[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Locations 
using 

CFD data 

[8] 

Col. 
[6] 

equiv 
. to 
[7]? 
[9] 

1 4 D 111,232, 
341,451 1.0 1.0 1.0 Y 

2 4 E See note 

3 3 D 111,255, 
551 1.0 1.0 1.0 Y 

4 3 E See note 
5 2 D 111,551 I 1.0 1.0 1.0 Y 
6 2 E See note 

7 1 D 
451,452, 
453,551, 
or 552* 

250.75 Range from 
1.25 to 1.5 1.0 152 or 

153 N 

8 1 E See note 

Eng 1 D 
(E) 555 251.25 

(0) 
1.75 

(1,3e-3) 
1.0 

1.05e-3 144 N 

Note: For all contaminant releases, occupant exposure is always 0 kg/kg. T h e r e f o r e , all sensor systems 
designed using multizone model data result in the same occupant exposure, 0 kg/kg, and there are no 
"optimal" designs. * almost unique sensor system 

Ta )le B-8. Sensor system designs for Test Case 8 using zonal model data 

Sensor 
sys. 

[1] 

Qty 

PI 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Objective function value 
(complementary obj. func. value) 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

Sensor 
sys. 

[1] 

Qty 

PI 

Obj. 
func. 

[3] 

Locations 
using 
zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

Location 
s using 

CFD 
data 
[8] 

Col. 
[6] 

equiv. 
to [7]? 

[9] 

1 4 D 132,222, 
453,534 

1.0 
(4.2e-6) 1.0 1.0 Y 

2 4 E 212,255, 
442,535 

4.2e-6 
(1.0) 

1,05e-3 1.05e-3 Y 

3 3 D 114,351, 
545 

1.0 
(4.2e-6) 1.0 1.0 Y 

4 3 E 233,324, 
454 

4.2e-6 
(1.0) 

1,05e-3 1.05e-3 Y 

5 2 D 114,551 1.0 
(4.2e-6) 1.0 1.0 Y 

6 2 E 112,551 4.2e-6 
(1.0) 

1.05e-3 1.05e-3 Y 

7 1 D 451,452, 
or 453* 

1.0 
(4.2e-6) 

Range from 
1.25 to 1.5 1.0 152 or 

153 N 

8 1 E 451,452, 
or 453 

4.2e-6 
(10) 

Range from 
1,07e-3 to 

1,22e-3 
1.05e-3 152 or 

153 N 

Eng 1 D 555 1.5 
(1.2e-5) 

1.75 
(1,3e-3) 

1.0 
1.05e-3 144 N 

* almost unique sensor system 
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Table B-9 to Table B-14 summarize the sensor system designs for each test case 

simulated for Zone^4[+], which had the wall-mounted diffuser and exhaust. 

Tables for selected test cases were reported in Chapter 2 and will not be repeated 

here. Sensor system designs for Test Case 9 using multizone and zonal model data are 

given on page 86 and86, respectively. Those for Test Case 15 using multizone and zonal 

model data are given on page 91 and91, respectively. And those for Test Case 16 using 

multizone and zonal model data are given on page 91 and 92, respectively. 
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Table B-ll. Sensor system designs for Test Case 13 using multizone model data. 

Sensor Qty 

[2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

[2] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7j? 

[9] 

1 4 D 113,141, 
251,441 

1.0 
(7.3e-8) 

2 4 E 131,242, 
452,525 

7.3e-8 
(1.0) 

3 3 D 211,451, 
541 

1.0 
(7.3e-8) 

4 3 E 131,215, 
541 

7.3e-8 
(1.0) 

5 2 D 211,551 1.0 
(7.3e-8) See note 

6 2 E 211,551 7.3e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1.1 e-6) 

8 1 E 441 7.3e-8 
(250.75) 

Eng 1 D 
(E) 551 1.25 

(1.1 e-6) 
Note: Using CFD data, every sensor location (i.e., subzone locations) was an optimal location to place a 
sensor. Note applicable to this table and following one. * almost unique sensor system 

Tab le B-l 0. Sensor system designs for Test Case 10 using zonal model data. 

Sensor Qty 

P] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

P] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7]? 

[9] 

1 4 D 123,211, 
344,451 

1.0 
(7.5e-8) 

2 4 E 141,231, 
441,551 

7.5e-8 
(1.0) 

3 3 D 131,421, 
551 

1.0 
(7.5e-8) 

4 3 E 221,335, 
551 

7.5e-8 
(1.0) 

5 2 D 131,451 1.0 
(7.5e-8) See note 

6 2 E 241,551 7.5e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1.1 e-6) 

8 1 E 441 7.5e-8 
(250.75) 

Eng 1 D 
(E) 551 1.25 

(1.1 e-6) 
* almost unique sensor system 
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Table B - l l . Sensor system designs for Test Case 13 using multizone model data. 

Sensor Qty 

[2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

[2] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7]? 

[9] 

1 4 D 153,322, 
421,551 

1.0 
(9.0e-8) 

2 4 E 151,215, 
322,441 

9.0e-8 
(1.0) 

3 3 D 211,322, 
451 

1.0 
(9.0e-8) 

4 3 E 211,341, 
551 

9.0e-8 
(1.0) 

5 2 D 221,451 1.0 
(9.0e-8) See note 

6 2 E 221,551 9.0e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1.3e-6) 

8 1 441 9.0e-8 8 1 t 441 (250.75) 

Eng 1 D 
(E) 551 1.25 

(1.3e-6) 
Note: Using CFD data, every sensor location (i.e., subzone locations) was an optimal location to place a 
sensor. Note applicable to this table and following one. * almost unique sensor system 

Table B-l 2. Sensor system designs for Test Case 13 using zonal model data. 

Sensor Qty 

(2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

(2] 

func. 

[3] 

zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7]? 

[9] 

1 4 D 151,222, 
521,552 

1.0 
(9.3e-8) 

2 4 E 112,231, 
455,551 

9.3e-8 
(1.0) 

3 3 D 111,435, 
551 

1.0 
(9.3e-8) 

4 3 E 111,433, 
551 

9.3e-8 
(1.0) 

5 2 D 121,451 1.0 
(9.3e-8) See note 

6 2 E 111,451 9.3e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1,3e-6) 

8 1 E 441 9.3e-8 
(250.75) 

Eng 1 D 
(E) 

551 1.25 
(1.3e-6) 

* almost unique sensor system 
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Table B - l l . Sensor system designs for Test Case 13 using multizone model data. 

Sensor Qty 

[2] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

[2] 

func. 

[3] 

multizone 
data 
[4] 

Multizone-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7]? 

[9] 

1 4 D 121,231, 
351,441 

1.0 
(8.4e-8) 

2 4 E 121,255, 
451,533 

8.4e-8 
(1.0) 

3 3 D 231,332, 
451 

1.0 
(8.4e-8) 

4 3 E 133,441, 
551 

8.4e-8 
(1.0) 

5 2 D 311,451 1.0 
(8.4e-8) See note 

6 2 E 221,551 8.4e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1.2e-6) 

8 1 E 441 8.4e-8 
(250.75) 

Eng 1 D 
(E) 551 1.25 

(1,2e-6) 
Note: Using CFD data, every sensor location (i.e., subzone locations) was an optimal location to place a 
sensor. Note applicable to this table and following one. * almost unique sensor system 

Tab e B - l 4. Sensor system designs for Test Case 14 using zonal model data. 

Sensor Qty 

P] 

Obj. 
Locations 

using 
Objective function value 

(complementary obj. func. value) 
Location 
s using 

Col. 
[6] 

sys. 

[1] 

Qty 

P] 

func. 

P] 

zonal 
data 
[4] 

Zonal-
optimal 

[5] 

CFD-
benchmarked 

[6] 

CFD-
optimal 

[7] 

CFD 
data 
[8] 

equiv. 
to [7]? 

[9] 

1 4 D 111,221, 
432,551 

1.0 
(8.6e-8) 

2 4 E 121,351, 
425,541 

8.6e-8 
(1.0) 

3 3 D 113,221, 
451 

1.0 
(8.6e-8) 

4 3 E 121,451, 
541 

8.6e-8 
(1.0) 

5 2 D 211,551 1.0 
(8.6e-8) See note 

6 2 E 221,551 8.6e-8 
(1.0) 

7 1 D 451 or 
551* 

1.25 
(1.2e-6) 

8 1 E 441 8.6e-8 
(250.75) 

Eng 1 D 
(E) 551 1.25 

(1,2e-6) 
* almost unique sensor system 



www.manaraa.com

294 

APPENDIX C Published portions of Chapter 3 (in Proceedings of Indoor Air 
2008 and ANCRiSST) 
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SUMMARY 
Indoor airflow is governed by a set of nonlinear, coupled partial differential equations (PDEs). 
Analytical solutions to these PDEs rarely exist for real-life applications. Thus, numerical 
approaches such as numerical integration and algebraic methods exist in the literature. 
Computational fluid dynamics (CFD) is the most widely used numerical integration approach. It 
is often cumbersome to setup and computationally expensive. In contrast, multizone and zonal 
models that utilize algebraic methods are relatively simple to setup and are computationally 
efficient. Though not as accurate as CFD results, algebraic methods have proven adequacy for 
many applications. In this paper another algebraic approach, singular value decomposition 
(SYD), was evaluated (1) as a method to predict indoor airflow, and (2) as a method to back-
estimate indoor airflow given information about actual airflow. Part 1 showed airflow results that 
compared favorably with a steady state multizone model. Part 2 showed SVD as a promising 
reverse-modelling method when given additional velocity data. 

KEYWORDS 

Indoor airflow modelling, Singular value decomposition, Sensor locations 

INTRODUCTION 
Simulating indoor airflow is important for ventilation design and control, which affect building 
energy use, the safety of the indoor environment, and indoor air quality (IAQ). These factors are 
important to building owners and occupants. There are three main types of indoor airflow 
simulation models: multizone, zonal, and CFD. Multizone models consider a building as a 
network of interconnected nodes (Walton, 1989). Each node is a well-mixed zone, wherein IAQ 
parameters such as temperature, contaminant concentration, and pressure, are spatially uniform. 
The flow network is solved using algebraic pressure relationships. Since the well-mixed 
assumption is not valid in most indoor air applications, the second type of airflow model, the 
zonal model, further subdivides each physical zone into subzones. This is not unlike meshing in 
CFD models. However, subzones in zonal models are not nearly quite as small as those used in 
CFD models. Zonal models also incorporate mass flow equations for driving elements such as 
velocity jets and thermal plumes. The inclusion of driving elements improves the zonal model's 
accuracy over multizone models. Lastly, CFD models use numerical integration to iteratively 
solve the governing equations of airflow and contaminant dispersion. Given the inherent 
complexity of numerical integration over algebraic methods, CFD models are thus more 
computationally intensive. Nevertheless, CFD models produce the most accurate results of the 
three models when compared to experimental data. 

mailto:yhc22@drexel.edu
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Multizone, zonal, and CFD models are forward-modelling techniques. Given boundary 
conditions, these models calculate indoor airflow and/or contaminant distribution. Airflow 
calculations are performed by first specifying a pressure field. In multizone and zonal models, the 
relationship between airflow and pressure has been empirically determined. Even though the 
empirical constants in these relationships have been widely accepted, they can affect the solution 
of airflow when changed (Jiru and Haghighat, 2006). In CFD, the pressure field is updated 
iteratively until the solution of the flow field converges. It is not a trivial task to obtain 
convergence, nor is it computationally efficient. All forward-modelling techniques require the 
user to specify initial and boundary conditions. These parameters are not always easy to specify 
correctly. 

Another modelling technique is reverse-modelling. These models use field measurements 
(experimental or synthetic) to estimate unknown parameters or past states in the model. Once 
these parameters or states are determined, the reverse-model can then provide additional 
information about current conditions or make predictions about the future. Miller (1997) utilized 
nonlinear least-squares minimization and tracer gas data to determine interzonal airflow rates 
from mass-balance relationships. This model may be limited to small buildings/zone 
configurations since the number of mass-balance relationships multiplies with the size of the 
building/zone. Using artificial neural networks and historic contaminant dispersion data, Hasham 
et al. (2004) predicted hourly contaminant concentrations. This study required gathering complete 
sets of historic contaminant data. Lastly, Zhang and Chen (2007) used "reverse CFD" equations 
to estimate source characteristics within a single enclosed space. Performing a reverse CFD 
simulation was met with the same complexity and computational effort as performing a forward 
CFD simulation. 

Using multizone (or zonal) models is attractive because of their ease in setup and computational 
efficiency. Using CFD models is attractive because it provides more accurate results than do 
multizone and zonal models. Nevertheless, CFD models are complex and computationally 
intense. Thus, it is desirable to take advantage of the efficiency of multizone and zonal models 
while simultaneously attaining accuracy comparable to that of CFD models for estimating indoor 
airflow and contaminant dispersion. Reverse-modelling may have the potential to do this. The 
proposed reverse-modelling method is singular value decomposition (SVD). Its performance in 
estimating indoor airflow is studied in this paper. In the future, its performance in estimating 
contaminant dispersion and source characteristics after a release could be explored. 

Objectives 
This study proposes to: (1) evaluate the performance of SVD as a forward-modelling approach 
for predicting indoor airflow; and (2) evaluate the performance of SVD as a reverse-modelling 
approach for estimating indoor airflow within a single space given additional airflow information 
from within that space. The performance of SVD as a forward airflow model will be compared to 
multizone and CFD models in Part 1. The performance of SVD as a reverse airflow model will 
be compared to a CFD model in Part 2. Future work will include the use of a multizone model for 
reverse-modelling in Part 2. 
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METHODS 

Singular value decomposition 
The space inside a single room can be subdivided into HxLxD control volumes. The net mass 
flow (in minus out) for each control volume must equal to zero, satisfying continuity. The system 
of mass balance equations, comprised of one expression per control volume, becomes 
underdetermined as H, L, and D increase (i.e., the number of unknown mass flow rates > the 
number of mass balance equations). To solve this underdetermined system, a method called 
singular value decomposition (SVD) (Golub and Kahan, 1965) can be employed. The general 
representation of any linear system is: 

Ax = b (1) 

where A is an m x n matrix, x contains the variables, and b contains solutions to the system. 
Normally, this system is easily solved by matrix inversion. However, if the system is 
underdetermined, there are an infinite number of solutions to x. Thus, to solve an 
underdetermined system, SVD uses the pseudoinverse of A. A can be factorized into: 

A = UEV t (2) 

where £ contains the singular values of A on its diagonal, U and V are orthogonal matrices 
containing corresponding singular vectors in their columns, and the superscript T is the transpose. 
These elements are used to find the pseudoinverse of A, A*. 

A* = V£ + U t (3) 

where is the transpose of £ with every non-zero entry replaced by its reciprocal. Thus, the 
original system represented by Eq. (1) can be solved by: 

x = A*xb (4) 

The accuracy of SVD can be checked by comparing the original "right hand side", b, with the one 
obtained by multiplying A with the x from Eq. (4). 

Study approach 
The airflow models described in the "Introduction" satisfy mass conservation upon completion of 
the solution process. Their ultimate objective is to solve for airflow rates, but all take an indirect 
approach. In contrast, SVD is used in this study to directly solve for mass flow rates. To 
demonstrate this, first a test room is selected and subdivided into subzones. Boundary conditions 
and subzone dimensions are also specified. In Part 1, the airflow network will be solved using 
SVD and the results compared to the multizone model, CONTAM (Walton and Dols, 2005), and 
the CFD model, AIRPAK (FLUENT, 2002). In Part 2, synthetic velocity data from the 
benchmark CFD simulation will be given as additional known conditions to the airflow network 
that was setup in Part 1. Performing the study in two parts helps to determine if SVD is better 
suited for forward- or reverse-modelling. 
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Figure 1. Test case room. 

Test case setup 
Consider a room which is 3mx2.7mx3m (Figure 1). The room has one inlet and outlet. Both are 
0.6mx 0.6m. Flow is isothermal. The inlet velocity is 1 m/s and the density of air is constant 
throughout the room at 1.225 kg/m3. The test room size and airflow conditions were taken from a 
study by Murakami and Kato (1989). It is also comparable to a small office. Three simulation 
methods were used: SVD, multizone, and CFD. Zonal modelling is saved for future studies. The 
exiting air flow rate was assumed to be equal to the entering air flow rate. Neither leakage nor 
other sources of airflow exchange were considered in this study. Future work would place the test 
room inside a larger building where a multizone model could provide boundary airflow exchange 
with surrounding zones. 

Airflow models used 
To use SVD, the room in Figure 1 was subdivided into 4 x 4 x 4 subzones. The width of the 
subzones in the x- and z - directions were 0.6, 0.9, 0.9, and 0.6m. The height of each subzone was 
0.675m. This spacing ensured that the inlet and outlet were contained in a single subzone. The 
face areas associated with each control volume were easily calculated given the subzone 
dimensions. Additional configurations of subzone size and number were evaluated as well. 
Unlike CFD modeling, however, the number and size of the subzones in algebraic models do not 
affect the result greatly. This conclusion was also reported by Mora et al. (2003). For any 
subzone (or control volume), the net mass flow, m, must equal zero. Mathematically: 

= = 0 (5) 

where i is the face of a control volume, p is the density of air in kg/m , v is the velocity of air in 
m/s, and A is the cross-sectional area through which the air passes. The system is thus: 

PL* = 0 (6) 

for N subzones, where A contains the face areas for each respective control volume. The 
boundary conditions and unknowns are contained in the quantity pSv. 

In CONTAM, the airflow between adjacent subzones was represented by a two-way, single 
opening model whose discharge coefficient was 0.78 and the exponent 0.5. The grid size for the 
CFD model was 30x26x30, roughly O.lmxO.lmxO.lm cells. The standard k-e turbulence model 
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was used to solve the steady state airflow. The grid size and turbulence model here were also 
used by Murakami and Kato (1989). 

Part 1: SVD as a forward-modelling approach 
The performance of the SVD and multizone models was evaluated. Qualitative assessments were 
performed by comparing the airflow patterns predicted by each model to the CFD benchmark. 
Quantitative assessments were performed by calculating the error between each model and CFD 
using: 

CFD result - model result , 
x 100% (7) 

CFD result 

Part 2: SVD as a reverse-modelling approach 
To use SVD as a reverse-modelling approach, various amounts of synthetic velocity data was 
provided to the model as known conditions. For convenience, synthetic velocity data was taken 
from the CFD simulation in Part 1. Future work would use actual velocity sensor data. Eighteen 
cases (Figure 2) were run in order to determine the amount and location of synthetic velocity data 
that had the most influence on the accuracy of the reverse-modelling capability of SVD. 
Synthetic velocity data was taken from "poles" located around the room. Each pole had four 
sensors, measuring velocities either both in the x- and ^-direction, only in the x-direction, or only 
in the ^-direction. 

RESULTS 

Part 1: Results of SVD as a forward-modelling approach 
The SVD model predicted airflow just as well as the multizone model, but no better, when 
compared to the CFD model. However, one striking difference is in the last column along the x-
direction (see dashed oval in Figure 3). The multizone model predicted zero flow, whereas the 
SVD model did predict some flow. 

As is shown in Figure 4, the error distributions of the SVD and multizone models nearly 
overlapped. Both error distributions peaked in the 51% to 100% error range. The meaning of the 
other lines will be discussed later. 

Part 2: Results of SVD as a reverse-modelling approach 
As mentioned previously, the SVD model with no incorporated velocity data performed no better 
than the multizone model. The next step was to incorporate velocity data and observe whether or 
not SVD fared better as a reverse-modelling approach. Figure 4 shows the error distribution using 
Eq. (7) for the SVD model (no synthetic velocity data provided), the multizone model, and the 
cases shown in Figure 2 (velocity data provided). Cases 1 and 4 showed vast improvement to the 
accuracy of the airflow estimation compared to the SVD model with no additional velocity data. 
Both distributions were skewed right, peaking in the lower ranges of percentage error. When the 
number of poles was reduced to four, the accuracy of the airflow estimation was reduced except 
for Cases 17 and 18. This was indicated by higher frequency in the higher ranges of percentage 
error (Cases 7, 10, 13, and 16). 
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Figure 2. "Pole" locations where synthetic velocity data were taken. 

The amount of velocity data collected at each sensor also affected the accuracy of the airflow 
estimation using SVD. When 16 measurement poles (Cases 1-3) were available, merely given x-
or ^-velocity data was sufficient to obtain a reasonably accurate description of the airflow in the 
test room. This was also the case when the number of measurement poles was reduced to 12, 
placed along the perimeter of the room (Cases 4-6). Here, the y-velocities were more helpful in 
improving the accuracy of the airflow estimation. This may be since under the inlet and outlet, 
which were along the perimeter of the room, the bulk of air was traveling in the vertical direction. 
In contrast, x-velocities were more helpful in improving the accuracy of the airflow estimation 
when the poles were placed in the center of the room (e.g., Cases 7-9). 

The next step was to observe which pole locations and which sensors attributed most to the 
accuracy of the airflow estimation using SVD. One pole at a time, up to four sensors were 
removed one at a time from Case 4. When sensors were being removed from one pole, the 
remaining 11 poles still had all of their sensors. Both x- and ^-velocities were available to SVD in 
the following cases. Observing the error distribution (results not shown), it was determined that 
one sensor atop each pole (except for the pole to the right of the inlet) could be removed 
independently without causing a more than 5% drop in accuracy. The accuracy of the airflow 
estimation was measured by the drop in the peak frequency value (compared to Case 4) of the 
error distribution. When one sensor was removed atop each pole simultaneously (Case 19), the 
accuracy decreased 23%. Nevertheless, qualitatively the resulting airflow pattern was still 
reasonable when compared to the CFD benchmark. It was also determined that removing the 
poles, one at a time, along the left and right walls (except for the pole on the left wall closest to 
the inlet) could be removed without causing a more than 5% drop in accuracy. When these poles 
were removed simultaneously (Case 20), the accuracy decreased 16%. Although quantitatively 
Case 20 fared better than Case 19, qualitatively Case 19 fared better than Case 20 (results not 
shown). Thus, other measures of model performance should be considered in addition to airflow 
rates. 
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Figure 4. Histogram showing frequency of percentage difference from CFD model. 

DISCUSSION 
The solution of indoor airflow has been approached using numerical integration of the governing 
equations of fluid flow and with algebraic solutions using pressure difference relationships. The 
former method can be both complex to setup and computationally intensive, whereas the latter 
method, though easy to setup and computationally efficient, does not provide as accurate of 
solutions. When these approaches are used for reverse-modelling, the same advantages and 
drawbacks when forward-modelling also apply. Thus, it was desirable to take advantage of the 
efficiency of multizone and zonal models while simultaneously attaining accuracy comparable to 
that of CFD models for the application of reverse-modelling. The proposed approach utilized 
SVD, a solution method that exhibited the same attractive qualities as the multizone and zonal 
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models, but also showed promise to be an appropriate alternative to using CFD for accurate 
reverse-modelling. The velocity data for this study came from a CFD simulation, but actual 
sensor data may also be used. 

To best improve the reverse-modelling performance of SVD, it was desirable to have as much 
sensor data as possible. But realistically, the amount of sensor data available would be 
constrained by availability, cost, and other factors. Thus, this study concluded that sensor data 
from the perimeter of the room was much more helpful in improving reverse-modelling 
performance than sensors placed in the centre of the room. The elimination of the measurement 
poles in the centre of the room is also an economic and efficient simplification for future 
experimental studies. Furthermore, since the inlet and outlet were along the perimeter of the test 
room, the bulk of air moved in the vertical direction along the perimeter. On these poles, 
measuring ^-velocity helped more to improve the accuracy of the airflow estimation by SVD than 
measuring x-velocity. The poles closest to the inlet were more influential to the accuracy of the 
airflow estimation than poles elsewhere. More cases could be run in the future to determine if 
more sensors can be removed from the remaining poles. 

The proposed method proved to be easy to setup, efficient, and fairly accurate in reverse-
modelling airflow when given additional information. The proposed method can be implemented 
in real-time applications where a CFD simulation was not previously performed and a limited 
number of sensor data is available. The resulting airflow patterns back-estimated by SVD can be 
used to evaluate indoor air quality and, in the future, locate contaminant releases. 

The full range of capabilities of the proposed approach has not yet been fully explored and is 
saved for future work. First, comparison of its reverse-modelling capability to that of a multizone 
model with the same velocity sensor data should be compared. Second, the proposed method 
should be extended to transient applications. Third, more cases using different sensor locations 
and sensor quantities should be considered in order to determine the optimal sensor configuration 
for best back-predicting airflow. Fourth, if for instance exact airflow prediction is not necessary 
in determining contaminant concentration, the proposed approach should be extended to 
estimating contaminant dispersion. Fifth, if the velocity sensors were replaced with temperature 
sensors, how would the accuracy of the airflow estimation using SVD model change. Since 
temperature sensors are both more economical and accurate than velocity sensors, they would be 
more commonly found in actual indoor environments. 

CONCLUSIONS 
The reverse-modelling of indoor airflow need not rely on complex CFD techniques or simple, but 
oftentimes, inadequate multizone or zonal modelling techniques. The proposed method using 
SVD has been shown to be as attractive as the multizone and zonal models for ease and 
efficiency, but with additional information can estimate airflow comparable to a CFD model. 
Further development of the proposed method could lead to better estimation of real-time indoor 
airflow. This information would be useful for evaluating indoor air quality and could also provide 
a quick estimate of contaminant dispersion. The proposed method has application in areas where 
the health and safety of building occupants is a priority. 
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ABSTRACT 

Indoor airflow, which is governed by a set of nonlinear, coupled partial differential 
equations (PDEs), is often the basis for demand ventilation control, indoor contamination risk 
analysis, and indoor air quality control. Analytical solutions to these PDEs rarely exist for real-
life applications. Thus, numerical approaches such as numerical integration and algebraic 
methods exist in the literature. Computational fluid dynamics (CFD) is the most widely used 
numerical integration approach. It is often cumbersome to setup and computationally expensive. 
In contrast, multizone and zonal models that utilize algebraic methods are relatively simple to 
setup and are computationally efficient. Though not as accurate as CFD results, algebraic 
methods have proven adequacy for many applications. In this paper, several algebraic approaches, 
including singular value decomposition (SVD), were evaluated as methods to inversely estimate 
indoor airflow given limited sensor measurements of actual airflow. The case studies showed 
SVD as a promising inverse modeling method when given additional data. In lieu of actual sensor 
data, this study provided synthetic velocity and temperature data to the inverse models. 
Depending on the type of data provided, the estimation accuracy of the proposed method varied. 
It was also found that the location of the provided data also affected the estimation accuracy of 
the proposed inversed airflow model. In situations where real sensor data is available, the 
identified inverse method has the potential to efficiently and accurately estimate indoor airflow. 
This information can then be used in the applications of estimating indoor air quality, detecting 
harmful contaminants, and guide future sensor placement. 

1 PhD candidate 
2 Assistant professor, presenter 
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INTRODUCTION 

Information about indoor airflow is important for ventilation design and control, which 
affect building energy use, the safety of the indoor environment, and indoor air quality (IAQ). 
These factors are important to building owners and occupants. There are three main types of 
forward indoor airflow simulation models: multizone, zonal, and computational fluid dynamics 
(CFD). Multizone models consider a building as a network of interconnected nodes (Walton 
1989). Each node is a well-mixed zone, wherein IAQ parameters such as temperature, 
contaminant concentration, and pressure, are spatially uniform. The flow network is solved using 
algebraic pressure relationships. Since the well-mixed assumption is not valid in most indoor air 
applications, the second type of airflow model, the zonal model, further subdivides each physical 
zone into subzones. This is not unlike meshing in CFD models. However, subzones in zonal 
models are not nearly as small as those used in CFD models. Zonal models incorporate mass flow 
equations for driving elements such as velocity jets and thermal plumes. The inclusion of driving 
elements improves the zonal model 's accuracy over multizone models. Lastly, CFD models use 
numerical integration to iteratively solve the governing equations of airflow and contaminant 
dispersion. Given the inherent complexity of numerical integration over algebraic methods, CFD 
models are thus more computationally intensive. Nevertheless, CFD models produce the most 
accurate results of the three airflow models when compared to experimental data. 

Multizone, zonal, and CFD models are forward modeling techniques. Given boundary 
conditions, these models calculate indoor airflow and/or contaminant distribution. Airflow 
calculations are performed by first specifying a pressure field. In multizone and zonal models, the 
relationship between airflow and pressure is assumed to be non-linear and empirically determined. 
Even though the empirical constants in these relationships have been widely accepted, they can 
affect the solution of airflow when changed (Jiru and Haghighat 2006). In CFD, the pressure field 
is updated iteratively until the solution of the flow field converges. It is not a trivial task to obtain 
convergence, nor is it computationally efficient. All forward modeling techniques require the user 
to specify initial and boundary conditions. These parameters are not always easy to specify 
correctly. 

Another modeling technique is inverse modeling. These models use field measurements 
(experimental or synthetic) to estimate unknown parameters or past states in the model. Once 
these parameters or states are determined, the inverse model can then provide additional 
information about current conditions or make predictions about the future. Miller et al. (1997) 
utilized nonlinear least-squares minimization and tracer gas data to determine interzonal airflow 
rates from mass balance relationships. This method of inverse modeling may be case-specific, as 
it requires a significant amount of measured data for each particular building case for model 
fitting. Using artificial neural networks and historic contaminant dispersion data, Hasham et al. 
(2004) predicted hourly contaminant concentrations. This study required gathering complete sets 
of historic contaminant data. Lastly, Zhang and Chen (2007) used "inverse CFD" equations to 
estimate source characteristics within a single enclosed space. Performing an inverse CFD 
simulation was met with the same complexity and computational effort as performing a forward 
CFD simulation. 

Fast development of indoor sensors and communication technology will make larger and 
larger amounts of sensor data available for use in indoor air applications. There is potential to 
include this sensor data in simplified, inverse airflow models in order to quickly obtain an 
accurate solution of indoor airflow. The development of such an inverse model and the design of 
a sensor system to collect the appropriate data are worth discussing. In this study, both singular 
value decomposition (SVD) and a multizone model are evaluated as potential inverse airflow 
models. Multizone models consider indoor airflow as a non-linear process. In this study, however, 
a linear approach was taken and singular value decomposition (SVD) was used to inversely solve 

Accepted for publication in Proceedings of Fifth International Workshop on Advanced Smart Structures 
and Technology 



www.manaraa.com

for indoor airflow. Both are attractive because of their ease in setup and computational efficiency. 
How sensor quantity and location affect the estimation accuracy of the inverse models is also 
discussed. 

STUDY APPROACH 

This study proposes to: (1) compare the performance of SVD and a multizone model as 
inverse modeling approaches for estimating indoor airflow given velocity data (discussed in Part I 
of this study); (2) optimize the quantity and location of velocity data provided to the inverse 
model that maximizes the indoor airflow estimation accuracy (Part II); and (3) compare the 
performance of the proposed inverse model using temperature sensor measurements to using 
velocity data (Part III). In lieu of experimental data, velocity and temperature data from CFD 
simulations will be provided to the inverse models representing sensor measurements. The 
performance of each inverse model will be evaluated by comparing model predictions with CFD 
data. 

In the study of indoor airflow, for any control volume of air, the net mass flow, m , must 
equal zero in order to satisfy continuity. For a system of N control volumes, 

where p is the density of air in kg/m3, v is the velocity of air in m/s, and A is the cross-sectional 
area through which the air passes. The boundary conditions and unknowns are contained in the 
quantity pZv. Another set of equations, for energy balance, can be used to solve for indoor airflow: 

where m is the mass flow rate of air, c is the specific heat of air, T is temperature of a subzone, hk 

is the convection coefficient for each surface (such as wall, floor, etc.) of a subzone, At is the area 
of each surface, and Tw,k is the temperature of each surface. Since there are up to six unknown v 
or m (left, right, up, down, front and back velocities) for any control volume, as N increases, the 
system becomes underdetermined. To solve an underdetermined system, a method called singular 
value decomposition (SVD) (Golub and Kahan 1965) will be employed. For the first objective 
(Part I of this study), airflow results using SVD (Chen and Wen 2008) and the multizone model, 
CONTAM (Walton and Dols 2005), as inverse airflow models will be compared. The 
performance of each inverse model will be evaluated using CFD data simulated by Airpak 
(FLUENT 2002). For the second objective (Part II of this study), genetic algorithm (GA) 
(Goldberg 1989) will be used to optimize the quantity and location of synthetic velocity data 
introduced to the inverse model in order to maximize its airflow estimation accuracy. For the third 
objective (Part III of this study), only the performance of the SVD model, incorporating 
temperature measurements, will be evaluated. 

Consider a room which is 3 m x 2 . 7 m x 3 m with one inlet and outlet. Both are 0 .6mx0.6m. 
Incoming flow is isothermal for Parts I and II. For Part III, the incoming air is 13°C, the walls of 

N 

A = 0 
n=l 

Test rooms 
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the room are held constant at 21 °C, and the initial temperature inside each subzone is 21 °C. The 
inlet velocity is 1 m/s and the density of air is constant throughout the room at 1.225 kg/m3. The 
test room size and airflow conditions were taken from Murakami and Kato (1989), which are 
comparable conditions for a small office. Three configurations for the location of the inlet and 
outlet are considered (Fig. 1). 

Airflow models used 
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(a) (b) 
Fig. 1. Test rooms A, B, and C. 

(c) 

Three airflow simulation methods were used: inverse SVD (invSVD), inverse CONTAM 
(invC), and CFD. Both invSVD and invC were used to inversely solve for indoor airflow. The 
CFD simulations provided synthetic sensor data to the inverse airflow models and was also used 
to evaluate the performance of the inverse airflow models. The performance of invSVD was 
evaluated both with and without infiltration. A constant infiltration rate of -0.04 kg/s was 
considered. The invSVD model that included infiltration will be referred to as invSVDl. The 
invSVD model that did not include infiltration will be referred to as invSVDO. Infiltration was 
always considered when using invC. Infiltration was not considered in the CFD model. CFD 
studies in the literature of indoor air modeling oftentimes neglect infiltration as well. First, it is 
assumed that when a space is mechanically ventilated, the higher-than-outdoor indoor air pressure 
prevents infiltration of outdoor air into the room (Zhai et al. 2003). Thus, even if infiltration were 
included, it would not disrupt indoor airflow. Second, the location of the paths of infiltration, such 
as small cracks in walls and around doors and windows, are often not visible to the eye. Not 
knowing the location of each infiltration path thus makes it challenging to accurately include 
infiltration in CFD models. For simplification, one study assumed infiltration to be uniformly 
distributed on an exterior wall (Wang et al. 2006). However, this method still does not represent 
actual infiltration. 

Each of the test rooms in Fig. 1 was subdivided into 4 x 4 x 4 control volumes (henceforth 
referred to as "subzones"). The width of the subzones was either 0.6 or 0.9m. The height of each 
subzone was 0.675m. This spacing ensured that the inlet and outlet were contained in a single 
subzone. Additional configurations of subzone size and number were evaluated as well. Unlike 
CFD modeling, however, the number and size of the subzones in algebraic models do not affect 
the result greatly (Mora et al. 2003). 

The invC model requires specifying the pressure-flow relationship between subzones 
where no physical boundary, such as a wall, exists. The literature on zonal modeling uses the 
power-law relationship with a discharge coefficient was 0.78 and the exponent 0.5 to do so (Mora 
et al. 2003). The grid size for the CFD model was 3 0 x 2 6 x 3 0 , roughly O.lmXO.lmXO.lm cells. 
The standard k-s turbulence model was used to solve the steady state airflow. The grid size and 
turbulence model here were also used by Murakami and Kato (1989). 

Part I: Comparing inverse SVD and inverse CONTAM 
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The performance of the invSVD and invC models was evaluated with CFD data. Various 
amounts of synthetic velocity data, which was taken from a CFD simulation, was provided to 
each model as additional known conditions. Future work could use velocity data collected from 
actual sensors. Eighteen test cases were run for each test room (Fig. 2). Synthetic velocity data 
was taken from "poles" located around the room. Each pole had four sensors, measuring 
velocities either both in the x- and _y-direction, only in the x-direction, or only in the ^-direction. 
The locations of the poles in Fig. 2 were selected based on ideal situations, such as having a large 
number of sensors evenly distributed throughout the entire test room (Fig. 2a), and based on more 
practical limitations on available sensor quantity (Fig. 2d-f). The airflow solutions resulting from 
the use of these respective configurations provide insight into the relative importance of locating 
sensors close to the diffuser or exhaust and the relative importance of sensor measurements from 
the perimeter versus from the center of the room. 

Test No. of x-veloc y-veloc 
case poles 

Test No. of x-veloc y-veloc 
case poles 

a) 1 16 d) 10 4 • • • I* • • • I* L a) 1 16 • d) 10 4 • 

• • • • • • • • a) 2 16 d) 11 4 

• • • • • • • • a) 3 16 • d) 12 4 • 

•1 • • • • • • n - > b > 4 12 e) 13 4 

a) X b) c) b) 5 12 e) 14 4 
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• • • 
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d) e) f) 
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Fig. 2. Pole locations where synthetic velocity data were taken. 

The absolute error between the airflow results of each inverse airflow model and CFD at 
the interface between all of the subzones was calculated. Using these values, a histogram or error 
distribution, was created for each test case. The skewness was then calculated for each error 
distribution, defined as: 

N f ( x , - X i 

where x, is the mean error, x, is the error in each bin, N is the number of bins, and s is the sample 

standard deviation. Seven bins are defined for this study. The more positive the skewness of an 
error distribution, the more the distribution peaked in the bins of smaller error, which is an initial 
indicator of more accurate airflow estimation when compared to the CFD airflow results. 

Part II: Optimizing sensor location for inverse SVD model 

Genetic algorithm (GA) was used to optimize the quantity and location of velocity data 
provided to the inverse model that maximizes the indoor airflow estimation accuracy. All of the 
subzones were candidate locations. Two trials were performed. In Trial 1, for each candidate 
location, only velocity measurements in one direction, either vertical or horizontal, were provided 
to each inverse airflow model as additional known data. In Trial 2, for each candidate location, 
both vertical and horizontal measurements were available. Given a specific number of sensors, 
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the objective function to be minimized was the negative of skewness in Eq. (4), which is also the 
same as maximizing skewness. 

Part III: Using temperature data for inverse SVD model 

Similar to Part I, here, SVD will be used to solve a set of energy balance equations (Eq. 3) 
given T and TWji. The same measure of estimation accuracy, skewness, in Part I will be applied in 
Part III. 

RESULTS AND DISCUSSION 

Part I: Comparing inverse SVD and inverse CONTAM 

The estimation accuracy of invSVD, with and without considering infiltration (invSVDO 
and invSVDl, respectively), was compared to that of invC for the test cases shown in Fig. 2. 
Table 1 shows that except for a few test cases (14 and 17), the difference between the skewness of 
the error distributions resulting from the use of the invSVDO and invSVDl models were small 
(<5%) for test room A. Similar results for found for test rooms B and C. Thus, it was concluded 
that including infiltration as a known boundary condition in the invSVD model neither degraded 
nor improved its estimation accuracy for the test cases in this study. Further, plots of the error 

Table 1. Summary of skewness of error distributions resulting from use of invSVDO, invSVDl, 
and invC models to inversely estimate airflow for test room A. 

Test case Skewness Model with % diff between % diff between 
invSVDO invSVDl invC highest 

skewness 
invSVD models invSVDl and 

invC 
1 2.645 2.646 2.594 invSVDl <1% 
2 2.641 2.645 2.584 invSVDl <1% 
3 1.763 1.746 1.880 invC <1% 7.692% 
4 2.623 2.623 2.548 invSVD <1% 
5 2.623 2.623 2.501 invSVD <1% 
6 1.137 1.123 1.328 invC <5% 18.29% 
7 1.696 1.616 1.610 invSVDO <5% 
8 0.951 0.998 1.281 invC 5.031% 28.29% 
9 1.488 1.372 1.263 invSVDO <5% 
10 1.378 1.396 1.500 invC <5% 7.450% 
11 1.451 1.439 1.839 invC <1% 27.81% 
12 0.804 0.866 0.894 invC 7.717% <5% 
13 1.178 1.767 1.835 invC <1% <5% 
14 1.539 1.713 1.710 invSVDl 11.337% 
15 1.139 1.094 0.723 invSVDO <5% 
16 1.903 1 546 1.072 invSVDO <1% 
17 1.546 1.625 1.531 invSVDl 5.073% 
18 1.072 1.063 1.104 invC <1% <5% 
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distributions and airflow results from the use of the invSVDl and invC models showed little 
difference (plots not shown for brevity). Thus, it was concluded that the invSVD and invC models 
demonstrated comparable airflow estimation accuracy for the test cases shown. Lastly, it was 
concluded that the best test cases among the ones tested in this study were 1, 2, 4, and 5 for test 
room A. Even though there were more sensor data available in test case 1 than in test case 4, the 
difference between the skewness of the resulting error distributions was <1%. Thus, it was 
concluded that sensors placed around the perimeter subzones of test room A provided sufficient 
data to estimate indoor airflow as accurately as placing sensors in every subzone. This offers a 
practical and cost effective simplification in both experimental set ups and field tests for future 
work in inverse airflow modeling since sensors are more readily installed on walls than in the 
center of a room. In a previous study published by the authors (Chen and Wen 2008), it was 
shown that if sensors were placed along the perimeter of the room (Fig. 2b), the major circulation 
patterns predicted by CFD are well-captured. Other test cases where the skewness of the resulting 
error distributions was high were test cases 13-15, where sensors were placed directly beneath the 
diffuser and exhaust. Thus, it was concluded that measurements below these airflow elements can 
improve the airflow estimation accuracy of the inverse models in this study. Similar conclusions 
were found for test rooms B and C. Details are not presented for brevity. 

Part II: Optimizing sensor location for inverse SVD model 

The invSVDl model was chosen for the optimization process since (1) the invSVDl 
model had comparable performance with the invSVDO and invC models (Part I discussion) and (2) 
either of the invSVD models was more easily incorporated into the optimization process than 
invC. Fig. 3 shows the skewness of the error distributions resulting from the incorporation of an 
increasing number of sensors for test room A. For both Trials 1 and 2, as the number of sensors 
increased, the skewness increased as well, which was to be expected. The difference between the 
skewness values for Trials 1 and 2 were never greater than 5% for any sensor quantity. Thus, it 
could be concluded that the extra measurement (and thus the extra sensor in an experimental 
setup) would not greatly improve the estimation accuracy of the invSVDl model. 

As the number of sensors increase, the skewness stabilized. For Trial 1, there is <5% 
improvement in skewness above nine sensors in test room A. For both test rooms B and C, it was 
four sensors. Thus, depending on the flow condition, the minimum number of sensors to achieve 
optimal estimation accuracy varies. With a limited number of sensors, the optimization process 
found locations that were more critical to the improvement of skewness. As the number of 
available sensors was increased, the additional measurements only provided marginal 
improvement to skewness. Knowing the optimal quantity of sensors for a specific test room 
necessary for acceptable inverse airflow estimation is important in most situations where sensor 
quantity is limited. For optimal sensor configurations up to and including nine sensors, the 
optimization process selected a majority of the sensors (91%) to be located on the walls for test 
room A. Forty percent of these were found to be located in the z-plane closest to the outlet (z=4) 
since the outlet in test room A was adjacent to a wall. However, in test room C, where the outlet 
was placed off the wall in z=3, the majority of the sensors were shown to be placed in the z-plane 
adjacent to the outlet (z=4, a wall). Thus, it was concluded that, up to the minimum optimal 
number of sensors for each respective test room, the majority of sensors will be placed on the 
wall closest to the outlet no matter the location of the inlet. Further, the majority of the optimally 
selected sensors will measure velocity in direction of the bulk airflow. 

Part III: Using temperature data for inverse SVD model 

A value of 4 W/m2 -K for hk is assumed for all subzone surfaces {El Mankibi, 2006 #770}. 
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The temperature of the incoming air and that of the surfaces is known. Therefore, the only 
unknonwn in Eq. (8) is the indoor airflow, which can be inversely solved for using invSVD. 
Given the sensor locations in Fig. 2a, it was found that the skewness of the error distribution 
(0.8136) was better than the case when no velocity data was included in the invSVD model, but 
not better than the case when no velocity data was included in the invC model. Improvements 
could be made by specifying more accurate values of hk. 

CONCLUSIONS 
Inverse modeling techniques provide opportunities to take advantage of fast-

developments in sensing and communicating technologies, using sensor data for efficient and 
accurate estimation and prediction of indoor airflow and contaminant distribution. However, for 
the capabilities of inverse models to reach their full potential, proper inverse model structure and 
sensor system design (such as quantity and type) need to be examined. In this study, (1) the 
feasibility of using SVD as an inverse modeling approach was studied, where indoor airflow was 
represented as a linear system, (2) the performances of inverse SVD models and inverse 
CONTAM model, where indoor airflow is represented as a non-linear system, were compared, (3) 
the need for including infiltration in these inverse models was evaluated, and (4) optimal sensor 
system design to best provide sensor measurements for inverse models was examined. It was 
found that the inverse SVD models performed comparably to the inverse CONTAM model when 
provided with velocity data. It was found that infiltration data did not affect inverse model 
performance greatly. Using genetic algorithm to optimize the estimation accuracy, or skewness, 
of the inverse SVD model, it was found that most sensors should be placed on the wall closest to 
the outlet and measure velocity in the vertical direction. These conclusions can be beneficial for 
simplifying and maximizing the effectiveness of indoor airflow experiments and measurements. 
This information would be useful for evaluating indoor air quality and could also provide an 
estimate of contaminant dispersion. When using temperature data for estimating indoor airflow, it 
was found that the airflow estimation was better than the case when no velocity data was 
provided to the inverse SVD model but no better the case when no velocity data was provided to 
the inverse CONTAM model. Further studies should be performed using other types of data, such 
as contaminant concentration, and observing the effect on inverse model performance. 
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APPENDIX D Detailed RSS values for airflow estimates in Chapter 3 

Table D- l . Summary of RSS values from use of invSVDO, invSVDl, and invC 
models to inversely estimate airflow for Zone A 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC lowest RSS between between 

invSVD invSVDl 
models and invC 

0 (base case) 1.430 1.413 1.268 
1 0.016 0.009 0.159 invSVDl <5% 
2 0.077 0.065 0.147 invSVDl 70% 
3 0.741 0.731 0.831 invSVDl 19% 
4 0.268 0.262 0.322 invSVDl <5% 
5 0.319 0.307 0.322 invSVDl <5% 
6 1.104 1.094 1.066 invC <1% <5% 
7 1.069 1.055 1.016 invC <5% <5% 
8 1.376 1.357 1.246 invC <5% <10% 
9 1.104 1.090 1.050 invC <5% <5% 
10 1.136 1.119 1.076 invC <5% <5% 
11 1.178 1.159 1.066 invC <5% <10% 
12 1.320 1.304 1.195 invC <5% <10% 
13 0.854 0.832 1.193 invSVDl <5% 
14 0.939 0.924 1.098 invSVDl <5% 
15 1.251 1.228 1.369 invSVDl <5% 
16 1.020 0.994 0.965 invC <5% <5% 
17 1.049 1.030 1.045 invSVDl <5% 
18 1.341 1.318 1.181 invC <5% 12% 
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Table D-2. Summary of RSS values from use of invSVDO, invSVDl, and invC 
models to inversely estimate airflow for Zone B 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC lowest RSS between between 

invSVD invSVDl 
models and invC 

0 (base case) 2.821 2.800 2.747 
1 3.157 3.140 4.334 invSVDl <1% 
2 2.382 2.395 1.293 invC <1% 85% 
3 2.004 1.996 3.717 invSVDl <1% 
4 2.082 2.065 2.991 invSVDl <1% 
5 1.877 1.850 1.385 invC <5% 34% 
6 2.082 2.535 3.251 invSVDO 22% 
7 2.173 2.162 1.681 invC <1% 29% 
8 1.810 1.798 1.008 invC <1% 78% 
9 2.620 2.598 3.071 invSVDl <1% 
10 2.388 2.370 2.667 invSVDl <1% 
11 2.633 2.612 2.616 invSVDl <1% 
12 2.706 2.686 2.667 invC <1% <1% 
13 2.007 1.987 1.722 invC <5% 15% 
14 1.875 1.857 1.523 invC <5% 22% 
15 2.724 2.701 2.817 invSVDl <1% 
16 2.644 2.613 3.044 invSVDl <5% 
17 2.756 2.732 2.982 invSVDl <1% 
18 2.753 2.722 2.916 invSVDl <5% 

Table D-3. Summary of RSS values from use of invSVDO, invSVDl, and invC 
models to inversely estimate airflow for Zone C 

Pole Skewness Model with % diff % diff 
configuration invSVDO invSVDl invC lowest RSS between between 

invSVD invSVDl 
models and invC 

0 (base case) 1.037 1.022 0.977 
1 0.699 0.681 1.587 invSVDl <5% 
2 0.589 0.592 0.467 invC <1% 27% 
3 0.866 0.811 2.050 invSVDl 7% 
4 0.547 0.530 1.823 invSVDl <5% 
5 0.563 0.552 0.697 invSVDl <5% 
6 0.868 0.818 1.674 invSVDl 6% 
7 1.040 1.020 1.261 invSVDl <5% 
8 1.039 1.024 1.092 invSVDl <5% 
9 1.034 1.015 1.240 invSVDl <5% 
10 0.997 0.980 0.975 invC <5% <1% 
11 0.993 0.979 0.866 invC <5% 13% 
12 1.018 1.001 1.058 invSVDl <5% 
13 0.887 0.868 1.225 invSVDl <5% 
14 0.877 0.865 0.978 invSVDl <5% 
15 1.063 1.036 1.116 invSVDl <5% 
16 0.830 0.809 1.457 invSVDl <5% 
17 0.894 0.878 0.818 invC <5% 7% 
18 0.884 0.865 1.430 invSVDl <5% 
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APPENDIX E Matlab codes for Chapter 4 

Matlab code for sensor models 

c o n c _ e r r = z e r o s ( n z o n e s , 1 ) ; 
c _ o u t = 0 ; 
c _ s u p p l y = 0 ; 

i f s e n s _ e r r o r = = 0 
f i l t e r _ c o n c _ k p = c o n c _ k p ; 
f i l t e r _ c _ o u t = c O ; 
f i l t e r _ c _ s u p p l y = c s ; 

e l s e i f s e n s _ e r r o r = = 1 ( p r e c i s i o n e r r o r ) | s e n s _ e r r o r = = 2 
i f s e n s _ e r r o r = = 2 

% u s e d o n l y o n c e t o g e t b i a s e r r o r s , s u b s e q u e n t r u n s , u s e 
% b i a s _ e r r o r _ z = ( ( a e + ( b e - a e ) * r a n d ( n z o n e s , 1 ) ) ) ; 
% b i a s _ e r r o r _ o = ( ( a e + ( b e - a e ) * r a n d ( 1 , 1 ) ) ) ; 
% b i a s _ e r r o r _ s = ( ( a e + ( b e - a e ) * r a n d ( 1 , 1 ) ) ) ; 

b i a s _ e r r o r _ z = c s v r e a d ( [ ' b i a s _ e r r o r _ z ( ' n u m 2 s t r ( n 
b i a s _ e r r o r _ o = c s v r e a d ( [ ' b i a s _ e r r o r _ o ( ' n u m 2 s t r ( n 
b i a s _ e r r o r _ s = c s v r e a d ( [ ' b i a s _ e r r o r _ s ( ' n u m 2 s t r ( n 

e n d 
f o r i = 1 : s i z e ( c o n c _ k p , 2 ) 

i f s e n s _ e r r o r = = 1 
c o n c _ e r r ( : , i ) = c o n c _ k p ( : , i ) . * ( 1 - ( a e + ( b e - a e ) * r a n d ( n z o n e s , 1 ) ) ) ; 
c _ o u t ( l , i ) = cO ( l , i ) * ( 1 - ( a e + ( b e - a e ) * r a n d ( l , 1 ) ) ) ; 
c _ s u p p l y ( I , i ) = c s ( 1 , i ) . * ( 1 - ( a e + ( b e - a e ) * r a n d ( l , 1 ) ) ) ; 

e l s e i f s e n s _ e r r o r = = 2 
c o n c _ e r r ( : , i ) = c o n c _ k p ( : , i ) . * ( 1 - s q r t ( ( ( a e + ( b e -

a e ) * r a n d ( n z o n e s , 1 ) ) ) . A 2 + b i a s _ e r r o r _ z . A 2 ) ) ; 
c _ o u t ( 1 , i ) = c O ( 1 , i ) * ( 1 - s q r t ( ( ( a e + ( b e - a e ) * r a n d ( l , 1 ) ) ) A 2 + b i a s _ e r r o r _ o A 2 ) ) ; 

c _ s u p p l y ( 1 , i ) = c s ( 1 , i ) . * ( 1 - s q . r t ( ( ( a e + ( b e -
a e ) * r a n d ( 1 , 1 ) ) ) A 2 + b i a s _ e r r o r _ s A 2 ) ) ; 

e n d 
e n d 
f i l t e r _ c o n c _ k p = z e r o s ( s i z e ( c o n c _ e r r , 1 ) , s i z e ( c o n c _ e r r , 2 ) ) ; 
f i l t e r _ c _ o u t = z e r o s ( s i z e ( c _ o u t , 1 ) , s i z e ( c _ o u t , 2 ) ) ; 
f i l t e r _ c _ s u p p l y = z e r o s ( s i z e ( c _ s u p p l y , 1 ) , s i z e ( c _ s u p p l y , 2 ) ) ; 
i f t r a n s — l 

w i n d o w S i z e = 6 ; 
f o r j k = 1 : n z o n e s 

f i l t e r _ c o n c _ k p ( j k , : ) = f i l t e r ( o n e s ( 1 , w i n d o w S i z e ) / w i n d o w S i z e , 1 , c o n c _ e r r ( j k , : ) ) ; 
e n d 
f i l t e r _ c _ o u t ( 1 , : ) = f i l t e r ( o n e s ( 1 , w i n d o w S i z e ) / w i n d o w S i z e , 1 , c _ o u t ) ; 
f i l t e r _ c _ s u p p l y ( 1 , : ) = f i l t e r ( o n e s ( 1 , w i n d o w S i z e ) / w i n d o w S i z e , 1 , c _ s u p p l y ) ; 

f i l t e r _ c o n c _ k p = f i l t e r _ c o n c _ k p ( : , w i n d o w S i z e + 1 : e n d ) ; 
f i l t e r _ c _ o u t = f i l t e r _ c _ o u t ( 1 , w i n d o w S i z e + 1 : e n d ) ; 
f i l t e r _ c _ s u p p l y = f i l t e r _ c _ s u p p l y ( 1 , w i n d o w S i z e + 1 : e n d ) ; 

e l s e i f t r a n s = = 0 
f i l t e r _ c o n c _ k p = c o n c _ e r r ; 
f i l t e r _ c _ o u t = c _ o u t ; 
f i l t e r _ c _ s u p p l y = c _ s u p p l y ; 

e n d 
e n d 

( p r e c i s i o n e r r o r s b i a s ) 

f i l e 

. z o n e s ) ' ) • t x t ' ] ) 
z o n e s ) ' ) • t x t ' ] ) 
. z o n e s ) ' ) . t x t ' ] ) 

i f t r a n s = = 0 
f i l t e r _ c o n c _ k p = f i l t e r _ c o n c _ k p ( : , 1 : t i m e t i m e ) ; 
f i l t e r _ c _ o u t = f i l t e r _ c _ o u t ( : , 1 : t i m e t i m e ) ; 
f i l t e r _ c _ s u p p l y = f i l t e r _ c _ s u p p l y ( : , 1 : t i m e t i m e ) ; 

e n d 
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Matlab code for LSQ inverse model 

g l o b a l v o l u m e s q _ a c t d t o c c u p _ k p d i f f _ m e t h o d v f i l t e r _ c o n c _ k p f i l t e r _ c _ o u t 
f i l t e r _ c _ s u p p l y n z o n e s A H S _ s u p p l y s e n s _ e r r o r m o d e l n p a r a m e r r t i m e t i m e 

c o n c _ u s e d = f i l t e r _ c o n c _ k p ; 
c O _ u s e d = f i l t e r _ c _ o u t ; 
c s _ u s e d = f i l t e r _ c _ s u p p l y ; 

% d o n o t a l t e r 
i f n z o n e s = = 3 

A = s i g n ( c _ c ( 1 : n z o n e s , : ) ) ; 
B = z e r o s ( n z o n e s , 1 ) ; 

A = [ A ; o n e s ( 1 , n z o n e s ) * - l r e p m a t ( [ l z e r o s ( 1 , n z o n e s - 1 ) ] , 1 , n z o n e s ) z e r o s ( 1 , n z o n e s * 2 ) - 1 
1 ; . . . 

z e r o s ( 1 , n p a r a m - n z o n e s * 2 ) o n e s ( 1 , n z o n e s ) * - l o n e s ( 1 , n z o n e s ) 1 - 1 ] ; 
B = [ B ; 0 ; 0 ] ; 

i f t r a n s = = 1 
% w r i t e t w o m o r e e q u a t i o n s s i n c e 100% OA s y s t e m 
A = [ A ; z e r o s ( 1 , n p a r a m - n z o n e s * 2 ) o n e s ( 1 , n z o n e s ) z e r o s ( 1 , n z o n e s ) - 1 0 ; . . . 

z e r o s ( 1 , n p a r a m - n z o n e s * 2 ) z e r o s ( 1 , n z o n e s ) o n e s ( 1 , n z o n e s ) 0 - 1 ] ; 
B = [ B ; 0 ; 0 ] ; 

e n d 
e n d 

LHS = [ c _ c ; A ] ; 
RHS = [ y _ c ; B ] ; 

% e q u a l i t y c o n s t r a i n t s ( k n o w n f l o w r a t e s ) 
n p a r a m = n p a r a m + 2 ; 

l b = z e r o s ( n p a r a m , 1 ) ; 
u b = r e p m a t ( A H S _ s u p p l y , n p a r a m , 1 ) ; 
o p t i o n s = o p t i m s e t ( ' M a x l t e r ' , 1 0 0 0 0 ) ; 

b = z e r o s ( n p a r a m , 1 ) ; 
A _ a d d = z e r o s ( n p a r a m , n p a r a m ) ; 
B _ a d d = z e r o s ( n p a r a m , 1 ) ; 
i f . n z o n e s = = 3 

i f t r a n s — 0 
i n d _ k n w = [ 1 3 : 1 6 1 9 : 2 0 ] ; 

e l s e i f t r a n s = = 1 
i n d _ k n w = [ 1 3 : 1 6 2 0 ] ; 

e n d 
e l s e i f n z o n e s = = 6 

i f t r a n s = = 0 
i n d _ k n w = [ 1 5 2 1 1 7 3 3 1 8 3 9 2 4 4 0 2 9 3 5 3 0 4 1 4 3 : 4 9 5 5 : 5 6 ] ; 

e l s e i f t r a n s = = 1 
i n d _ k n w = [ 1 5 2 1 1 7 3 3 1 8 3 9 2 4 4 0 2 9 3 5 3 0 4 1 4 3 : 4 9 5 6 ] ; 

e n d 
e n d 
i n d _ k n w = s o r t ( i n d _ k n w ) ; 
f o r i = 1 : s i z e ( i n d _ k n w , 2 ) 

A _ a d d ( i n d _ k n w ( i ) , i n d _ k n w ( i ) ) = 1 ; 
B _ a d d ( i n d _ k n w ( i ) , 1 ) = q _ a c t ( i n d _ k n w ( i ) ) ; 

e n d 
A e q = A _ a d d ; 
b e q = B _ a d d ; 
t h e t a h a t = l s q l i n ( L H S , R H S , [ ] , [ ] , A e q , b e q , l b , u b , [ ] , o p t i o n s ) ; 
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Matlab code for RLS inverse model 

function [thetahat,corr,excited] = myfun_2_rls(thetainit,Pinit,contrained,gamma) 
global volumes q_act dt occup_kp diff_method v filter_conc_kp filter_c_out 
filter_c_supply nzones AHS_supply sens_error model nparam err occ_error % for other 
models to change CONTAM data 
% contrained = 0 = unconstrained 
% contrained = 1 = linear equalities 
% contrained = 2 = linear inequalities 
% contrained = 3 = CRI with equality + inequality 

P = eye(18)*Pinit; 
x = filter_conc_kp; 
cO = filter_c_out; 
cs = filter_c_supply; 

timetime = 288*3; 

thetahat(1:18,1) = thetainit; 
if contrained == 0 I contrained == 3 

thetahat (13:16,1) = q_act (13 :16,1) ; 
end 
n p a r a m = s i z e ( t h e t a h a t , 1 ) ; 

% linear constraints A*theta = B 
% (1) continuity 
A = [ 1 0 0 - 1 - 1 - 1 0 1 0 0 1 0 1 0 0 - 1 0 0 ; . . . 

0 1 0 0 1 0 - 1 - 1 - 1 0 0 1 0 1 0 0 - 1 0 ; . . . 
0 0 1 0 0 1 0 0 1 -1 -1 -1 0 0 1 0 0 -1 ]; 

B = zeros (3,1); 
% (2) known values 
ind_knw = [13:16]; 
A_add = zeros(3,nparam); 
for i = 1:size(ind_knw,2) 

A _ a d d ( i , i n d _ k n w ( i ) ) = 1 ; 
B _ a d d ( i , l ) = q _ a c t ( i n d _ k n w ( i ) ) ; 

end 
i f c o n t r a i n e d == 1 

A = [ A ; A _ a d d ] ; 
B = [ B ; B _ a d d ] ; 

end 

P_st = eye(nparam) - A\A; 
k = 1; 
C(:,:,k) = [cO (1, k) 0 0 -x(l,k) -x(l,k) -x(l,k) 0 x(2,k) 0 0 x(3,k) 0 cs(l,k) 0 0 -x(l,k) 
0 0 

0 cO (1, k) 0 0 x (1, k) 0 -x (2, k) -x(2,k) -x(2,k) 0 0 x(3,k) 0 cs(l,k) 0 0 -
x(2, k) 0 ; . . . 

0 0 cO (1, k) 0 0 x (1, k) 0 0 x(2,k) -x(3,k) -x(3,k) -x(3,k) 0 0 cs(l,k) 0 0 -
x (3, k) ] ; 

for i = 2:timetime 
y (:,i) = [ (x (:,i)-x (:,i-1))/dt.*v-occup_kp(:,i-1)]; 
phi_transp ( : , : , i) = [c0(l,i) 0 0 -x(l,i-l) -x(l,i-l) -x(l,i-l) 0 x(2,i-l) 0 0 x(3,i-l) 

0 cs (1,i) 0 0 -x(1,i-1) 0 0;... 
0 cO (1, i) 0 0 x (1, i-1) 0 -x (2, i-1) -x(2,i-l) -x(2,i-l) 0 0 

x (3,i-1) 0 cs(1,i) 0 0 -x(2, i-1) 0;... 
0 0 cO (1, i) 0 0 x (1, i-1) 0 0 x(2,i-l) -x(3,i-l) -x(3,i-l) -

x (3, i-1) 0 0 cs (1, i) 0 0 -x(3,i-l)]; 
phi(:, :,i) = phi_transp(:,:, i) '; 
K(:,:,i) = P (:,:, i-1) *phi (:,:, i) / [gamma*eye (size (phi_transp, 1) ) + 

phi_transp(:,:,i)*P(:,:,i-1)*phi(:,:,i)]; 
corr(:,i) = y(:,i) - phi_transp(:,:,i)*thetahat(:,i-1); 
excited(:,:,i) = phi_transp(:,:,i)*P(:,:,i-1)*phi(:,:,i); 
P ( : , : , i ) = P ( : , : , i - 1 ) * ( e y e ( n p a r a m ) - K ( : , : , i ) * p h i _ t r a n s p ( : , : , i ) ) / g a m m a ; 
if min(abs(corr(:,i))) < 1.9e-5 

if contrained == 0 | contrained == 3 
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thetahat(:,i) = thetahat(:,i-1) + K(:, :,i)*corr(:,i); 
elseif contrained == 1 

thetahat(:,i) = A\B + P_st*K(: , :,i)*[y(:,i) - phi_transp(:, :,i)*thetahat(:,i-
1) ] ; 

end 
if contrained == 3 

% equality constraints (continuity) 
P_EC = P (: , : , i) ; 
W = inv(A*P_EC*A'); 
thetahat_EC (:,i) = thetahat(:,i) - P_EC*A'*W*(A*thetahat(:,i)-B(:,1)); 
thetahat_EC(:,i) = thetahat(:,i) ; 
% inequality constraints (non-negativity) 
H = P_EC - P_EC*A'*W*A*P_EC; 
H_diag = diag(H); 
for ih = 1:nparam 

Hii(ih,1) = 1/H_diag(ih,1); 
end 
D = diag(Hii); 
miu_star_orig = -D*thetahat_EC( : , i) ; 
miu_star = miu_star_orig; 
for mi = 1:nparam 

if miu_star_orig(mi,1) < 0 
miu_star(mi,1) = 0; % truncate negative values 

end 
end 
thetahat_IC(:,i) = thetahat_EC(:,i) + H*miu_star; 
% enforce inequality constraints, if necessary 
for fi = 1: nparam 

if thetahat_IC(fi, i) < 0 
thetahat_IC(fi,i) = 0; % truncate negative values 

end 
end 
thetahat (:,i) = thetahat_IC(:,i); 

end 
else 

thetahat(:,i) = thetahat(:,i-1); 
P(:, :,i) = P (: , :,i-l); 

end 
end 

Matlab code for NONLINOPTIM & SDE inverse models 

function [x,fval,exitflag, output] = runnested(xQ,lb,ub) 
options = optimset('MaxFunEval',100000,'Maxlter',100000,'TolFun',le-

8, 'FinDiffType', 'central','Display','iter'); 

[x,fval,exitflag,output] = fmincon(@myfun_2,xO, [], H , [ ] , [ ] , l b ,ub ,Sconfun,options); 

function [fval] = myfun_2(x) 
global volumes q_act dt occup_kp diff_method v filter_conc_kp filter_c_out 
filter_c_supply nzones AHS_supply sens_error model nparam err occ_error% for other models 
to change CONTAM data 

conc_used = filter_conc_kp; 
c0_used = filter_c_out; 
cs_used = filter_c_supply; 

timetime = 288*1; % 288*ndays or size(conc_used,2) 

if model == 1 (SDE inverse model) s sens_error == 0 
sigma = sqrt(0.025^2+0.025"2); 

elseif model == 1 (SDE inverse model) & sens_error == 1 
sigma = 0.05; 

elseif model == 1 (SDE inverse model) s sens_error == 2 
sigma = sqrt(0.025A2+0.025"2); 

end 
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q_estim = [-x(5)-x(6)-x(4)-x(16) x(8) x(ll) x(l) x(13);... 
x (5) -x (8 ) -x (9) -x (7) -x (17) x(12) x(2) x(14);... 
x (6) x (9) -x(ll)-x(12)-x(10)-x(18) x(3) x(15)]; 

toler = 0.05; 

wts = [1;1;1]; % weighting 

c_model(:,1) = conc_used(:,1); 
conc(:,l) = [c_model(:,1);c0_used(1,1);cs_used(1,1)]; 

for ic = 2: timetime 
if model == 1 (SDE inverse model) 

dW(:,ic) = 0 + sqrt(dt)*randn(3,1); 
rand_error(:,ic) = volumes*(q_estim*conc(:,ic-1)*sigma).*dw(:,ic) 

if occ_error == 0 
c_model(:,ic) = c_model(:,ic-1) + volumes*(q_estim*conc(: 

1)+occup_kp(:,ic-1))*dt+rand_error(:, ic) ; 
elseif occ_error == 1 
end 

elseif model == 3 (NONLINOPTIM inverse model) 
c_model(:,ic) = c_model(:, ic-1) + volumes*(q_estim*conc(:,ic-

1)+occup_kp(:,ic-1))*dt; 
end 
for jc = 1:size(c_model,1) 

if c_model(jc,ic) < 0 
c_model(jc,ic) = 0; 

end 
end 
conc(:,ic) = [c_model(: , ic) ; c0_used(1, ic);cs_used(1, ic)] ; 
c_act(:,ic) = conc_used(:, ic) ; 
error(:,ic) = wts.*(c_model(:,ic) - c_act(:,ic))."2; 

end 
ic; 
fval = sum(sum(error)) ; 

function [c, ceq] = confun(x) 
global q_act nzones 
% Nonlinear inequality constraints 
c = [ ] ; 
% Nonlinear equality constraints 
if nzones == 3 

ceq = [x(13)-q_act(13);x(14)-q_act(14);x(15)-q_act(15);x(16)-q_act(16);.. 
x(8)+x(ll)+x(l)+x(13)-x(5)-x(6)-x(4)-x(16) ; . . . 
x(5)+x(12)+x(2)+x(14)-x(8)-x(9)-x(7)-x(17) ; . . . 
x(6) +x(9) +x(3) +x(15) -x(ll) -x(12)-x(10)-x(18) ) ; 

end 
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APPENDIX F Detailed reports of building airflow network estimates for 
transient test case for Chapter 4 

Table F-l. Estimated building airflow network using synthetic perfect CO2 
measurements (transient, LSQ model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA 0 0 0 % 
QAO 151 (89) 160 (94) 6 % 
QOB 0 0 0 % 
QBO 144 (85) 0 1 0 0 % 
Qoc 0 0 0 % 
Qco 130 (76) 2 6 6 (156) 1 0 4 % 
QAB 71 (42) 6 7 (39) 6 % 
QBA 0 0 0 % 
QAC 0 0 0 % 
QCA 2 2 2 (130) 2 2 6 (133) 2 % 
Qac 0 2 4 ( 1 4 ) 1 0 0 % 
QCB 0 1 (1) 1 0 0 % 
QRB 178 (104) 2 9 3 (172) 6 4 % 

QRC 822 (482) 7 0 8 (415) 1 4 % 
IQJA 2 2 2 (130) 2 2 6 (133) 2 % 
IQAj 2 2 2 (130) 2 2 7 (133) 2 % 
ZQjB 321 (188) 3 1 7 ( 1 8 6 ) 1% 
IQBj 3 2 2 ( 1 8 9 ) 317 (186) 2 % 
IQJC 1176 (689) 1201 (704) 2 % 
ZQci 1175 (688) 1201 (704) 2% 
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Table F-2. Estimated building airflow network using 1,000 sets of synthetic 
imperfect CO2 measurements with precision error only (transient, LSQ model). 

Synthetic airflow rate, Estimated airflow rate, Synthetic value within 
m3/h (cfm) m3/h (cfm) 

Min Max 
estimated range? 

(If N, percentage difference) 
QOA 0 0 0 Y 
QAO 151 (89) 177(104) 208(122) N (17-37%) 
QOB 0 0 4(2) Y 
QBO 144 (85) 45 (27) 269 (157) Y 
QOC 0 0 9 (5) Y 
QCO 130 (76) 0 190(111) Y 
QAB 71 (42) 3(2) 21(12) N (71-95%) 
QBA 0 0 2(1) Y 
QAC 0 0 0 Y 
QCA 222 (130) 192(112) 216(127) N (3-14%) 
QBC 0 0 10(6) Y 
QCB 0 0 2(1) Y 
QRB 178 (104) 0 216(127) Y 
QRC 822 (482) 784 (459) 1011 (592) Y 
*QJA 222(130) 192(112) 219(128) N (2-14%) 
IQA] 222 (130) 180(105) 228 (134) Y 
ZQJE 321 (188) 253(148) 276(162) N (14-21%) 
ZQBJ 322 (189) 45(27) 497(291) Y 
ZQIC 1176 (689) 1176 (689) 1195 (700) Y 
ZQci 1175 (688) 976(572) 1419(832) Y 

Table F-3. Estimated building airflow network using 1 set of synthetic imperfect 
CO2 measurements with precision error only (transient, LSQ model). 
Synthetic airflow rate, Estimated airflow Percentage error in Q 

m3/h (cfm) rate, m3/h (cfm) 
QOA 0 0 0% 
QAO 151 (89) 197(115) 30% 
QOB 0 0 0% 
QBO 144 (85) 0 100% 
QOC 0 0 0% 
QCO 130 (76) 230 (135) 77% 
QAB 71 (42) 9(5) 88% 
QBA 0 0 0% 
QAC 0 0 0% 
QCA 222 (130) 205 (120) 8% 
QBC 0 22 (13) 100% 
QCB 0 0 0% 
QRB 178 (104) 237 (139) 33% 
QRC 822 (482) 763 (447) 7% 
IQJA 222 (130) 205 (120) 8% 
IQAJ 222 (130) 205 (120) 8% 
IQJB 321 (188) 258 (151) 19% 
I Q B J 322 (189) 259(152) 20% 
IQjc 1176(689) 1198 (702) 2% 
IQc, 1175 (688) 1198 (702) 2% 
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Table F-4. Estimated building airflow network using 1,000 sets of synthetic 
imperfect CO2 measurements with precision error & bias (transient, LSQ model). 

Synthetic airf low rate, Estimated airf low rate, Synthetic value within 
m3/h (cfm) m3/h (cfm) estimated range? 

Min Max (If N, percentage difference) 
QOA 0 0 0 Y 
QAO 151 (89) 196(115) 202(119) N (29-34%) 
QOB 0 2(1) 4(3) N (100%) 
QBO 144 (85) 127 (74) 324(190) Y 
QOC 0 35 (20) 41 (24) N (100%) 
QCO 130 (76) 0 141 (83) Y 
QAB 71 (42) 23 (13) 26 (15) N (63-68%) 
QBA 0 0 0 Y 
QAC 0 0 0 Y 
QCA 222(130) 221 (130) 226(132) Y 
QBC 0 0 0 Y 
QCB 0 0 0 Y 
QRB 178 (104) 0 150 (88) N (15-100%) 
QRC 822 (482) 850 (498) 1047 (613) N (3-27%) 
ZQJA 222(130) 221 (130) 226(132) Y 
IQA] 222 (130) 219 (128) 229(134) Y 
IQjB 321 (188) 275 (161) 280 (164) N (13-14%) 
ZQBj 322 (189) 127 (74) 474 (278) Y 

• £Qjc 1176 (689) 1211 (710) 1218 (714) N (3-4%) 
IQci 1175 (688) 1071 (628) 1414 (828) Y 

Table F-5. Estimated building airflow network using 1 set of synthetic imperfect 
CO2 measurements with precision error & bias (transient, LSQ model). 

Synthetic airf low rate, 
m3/h (cfm) 

Estimated airf low 
rate, m3/h (cfm) 

Percentage error in Q 

Q OA 0 0 0% 
QAO 151 (89) 197(116) 30% 
QOB 0 3(1) 100% 
QBO 144 (85) 275 (161) 91% 
QOC 0 45 (26) 100% 
QCO 130 (76) 0 100% 
QAB 71 (42) 28 (16) 60% 
QBA 0 0 0% 
QAC 0 0 0% 
QCA 222 (130) 225 (132) 1% 
QBC 0 0 0% 
QCB 0 0 0% 
QRB 178 (104) 5(3) 97% 
QRC 822 (482) 996 (584) 21% 
IQJA 222 (130) 225 (132) 1% 
IQA; 222 (130) 225 (132) 1% 
IQJB 321 (188) 280 (164) 13% 
Z Q BJ 322(189) 280(164) 13% 
IQJC 1176 (689) 1211 (716) 4% 

1175 (688) 1211 (716) 4% 
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Table F-6 . Es t imated bui lding a ir f low n e t w o r k us ing synthet ic perfect C 0 2 

m e a s u r e m e n t s ( transient , N O N L I N O P T I M model ) . 
Synthetic airflow rate, 

m3/h (cfm) 
Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA 0 0 0% 
QAO 151 (89) 210 (123) 38% 
QOB 0 0 0% 
QBO 144 (85) 217 (127) 51% 
QOC 0 0 0% 
Qco 130 (76) 391 (229) 201% 
QAB 71 (42) 33 (19) 53% 
QBA 0 40 (24) 100% 
QAC 0 0 0% 
QCA 222(130) 202 (119) 9% 
QBC 0 0 0% 
QCB 0 193 (113) 100% 
QRB 178 (104) 217 (127) 22% 
QRC 822 (482) 391 (229) 52% 
ZQJA 222 (130) 243(142) 9% 
IQAJ 222 (130) 243 (142) 9% 
IQJB 321 (188) 475 (278) 48% 
ZQBJ 322 (189) 475 (278) 47% 
£Qjc 1176 (689) 1176 (689) 0% 
ZQci 1175 (688) 1177 (690) 0% 

T a b l e F-7 . Es t imated bui lding a irf low n e t w o r k us ing 1,000 sets of synthet ic 
imperfect C 0 2 m e a s u r e m e n t s w i th precis ion error only ( transient , N O N L I N O P T I M 

model) . 
Synthetic airflow rate, Estimated airflow rate, Synthetic value within 

m3/h (cfm) m3/h (cfm) estimated range? 
Min Max (If N, percentage difference) 

QOA 0 0 0 Y 
QAO 151 (89) 209(123) 209 (123) N (38%) 
QOB 0 0 0 Y 
QBO 144 (85) 217 (127) 217(127) N (51%) 
Qoc 0 0 0 Y 
Qco 130 (76) 391 (229) 391 (229) N (201%) 
QAB 71 (42) 33 (19) 33 (19) N (53%) 
QBA 0 40 (24) 40 (24) N (100%) 
QAC 0 0 0 Y 
QCA 222 (130) 202 (119) 202(119) N (9%) 
QBC 0 0 0 Y 
QCB 0 192 (113) 192(113) N (100%) 
QRB 178 (104) 217 (127) 217(127) N (22%) 
QRC 822 (482) 391 (229) 391 (229) N (52%) 
IQJA 222(130) 243(142) 243 (142) N (9%) 
I Q A J 222(130) 243(142) 243 (142) N (9%) 
IQJB 321 (188) 475 (278) 475 (278) N (48%) 
ZQBJ 322 (189) 475 (278) 475 (278) N (47%) 
IQJC 1176 (689) 1176 (689) 1176 (689) Y 
ZQA 1175 (688) 1176 (689) 1176 (689) Y 
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Table F-8. Estimated building airflow network using 1 set of synthetic imperfect 
CO2 measurements with precision error only (transient, NONLINOPTIM model). 

Synthetic airflow rate, Estimated airflow Percentage error in Q 
m3/h (cfm) rate, m3/h (cfm) 

QOA 0 0 0% 
QAO 151 (89) 209 (123) 38% 
QOB 0 0 0% 
QBO 144 (85) 217(127) 51% 
QOC 0 0 0% 
QCO 130 (76) 391 (229) 201% 
QAB 71 (42) 33 (19) 53% 
QBA 0 40 (24) 100% 
QAC 0 0 0% 
QCA 222 (130) 202 (119) 9% 
QBC 0 0 0% 
QCB 0 192(113) 100% 
QRB 178(104) 217(127) 22% 
QRC 822 (482) 391 (229) 52% 
IQJA 222 (130) 243 (142) 9% 
IQAJ 222 (130) 243 (142) 9% 
IQJB 321 (188) 475 (278) 48% 
IQBJ 322(189) 475 (278) 47% 
ZQjc 1176 (689) 1176 (689) 0% 
IQq 1175 (688) 1176 (689) 0% 

Table F-9. Estimated building airflow network using 1,000 sets of synthetic 
imperfect CO2 measurements with precision error & bias (transient, 

NONLINOPTIM model). 
Synthetic airflow rate, Estimated airflow rate, Synthetic value within 

m3/h (cfm) m3/h (cfm) estimated range? 
Min Max (If N, percentage difference) 

QOA 0 0 0 Y 
QAO 151 (89) 209 (123) 209(123) N (38%) 
QOB 0 0 0 Y 
QBO 144 (85) 217(127) 217(127) N (51%) 
QOC 0 0 0 Y 
Qco 130 (76) 391 (229) 391 (229) N (201%) 
QAB 71 (42) 33 (19) 33 (19) N (53%) 
QBA 0 40 (24) 40 (24) N (100%) 
QAC 0 0 0 Y 
QCA 222(130) 202(119) 202(119) N (9%) 
QBC 0 0 0 Y 
QCB 0 192(113) 192 (113) N (100%) 
QRB 178 (104) 217(127) 217(127) N (22%) 
QRC 822 (482) 391 (229) 391 (229) N (52%) 
£QjA 222(130) 243(142) 243(142) N (9%) 
ZQAJ 222(130) 243(142) 243(142) N (9%) 
IQjB 321 (188) 475 (278) 475 (278) N (48%) 
IQBJ 322 (189) 475 (278) 475 (278) N (47%) 
IQJC 1176 (689) 1176(689) 1176(689) Y 
IQq 1175 (688) 1176(689) 1176(689) Y 
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Table F-10. Estimated building airflow network using 1 set of synthetic imperfect 
CO2 measurements with precision error & bias (transient, NONLINOPTIM model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA 0 0 0 % 
QAO 151 (89) 2 0 9 ( 1 2 3 ) 3 8 % 
QOB 0 0 0 % 
QBO 144 (85) 2 1 7 (127) 5 1 % 
QOC 0 0 0 % 
QCO 130 (76) 391 (229) 2 0 1 % 
QAB 71 (42) 33 (19) 5 3 % 
QBA 0 4 0 (24) 1 0 0 % 
QAC 0 0 0 % 
QCA 2 2 2 (130 ) 2 0 2 (119) 9 % 
QBC 0 0 0 % 
QCB 0 1 9 2 ( 1 1 3 ) 1 0 0 % 
QRB 178 (104) 2 1 7 ( 1 2 7 ) 2 2 % 
QRC 8 2 2 (482) 391 (229) 5 2 % 
IQJA 2 2 2 (130 ) 2 4 3 (142) 9 % 
IQAJ 2 2 2 (130 ) 2 4 3 (142) 9 % 
ZQJB 321 (188 ) 4 7 5 (278) 4 8 % 
IQBJ 3 2 2 ( 1 8 9 ) 4 7 5 (278) 4 7 % 
ZQJC 1176 (689) 1176 (689) 0 % 
I Q A 1175 (688) 1176 (689) 0 % 

Table F - l l . Estimated building airflow network using synthetic perfect CO2 
measurements (transient, SDE model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA N W N 0 % 
QAO 151 (89) 2 1 2 ( 1 2 4 ) 4 0 % 
QOB 0 0 0 % 
QBO 144 (85) 2 3 4 (137) 6 2 % 
QOC 0 0 0 % 
QCO 130 (76) 366 (215) 1 8 2 % 
QAB 71 (42) 8 ( 4 ) 8 9 % 
QBA 0 30 (17) 1 0 0 % 
QAC 0 0 0 % 
QCA 2 2 2 ( 1 3 0 ) 190 (112) 1 4 % 
QBC 0 0 0 % 
QCB 0 2 4 3 (142) 1 0 0 % 
QRB 178 (104) 2 3 7 (139) 3 3 % 
QRC 8 2 2 (482) 377 (221) 5 4 % 
IQJA 2 2 2 ( 1 3 0 ) 2 2 0 (129) 1 % 
ZQAJ 2 2 2 ( 1 3 0 ) 2 2 0 (129) 1 % 
ZQJB 321 (188) 500 (293) 5 6 % 
IQBJ 3 2 2 (189) 500 (293) 5 5 % 
ZQJC 1176 (689) 1176 (689) 0 % 
IQci 1175 (688) 1176 (689) 0 % 
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Table F-12. Estimated building airflow network using synthetic imperfect CO2 
measurements with precision error only (transient, 1,000 iterations of SDE model). 

Synthetic airflow rate, Estimated airflow rate, Synthetic value within 
m3/h (cfm) m3/h (cfm) estimated range? 

Min Max (If N, percentage difference) 
QOA 0 0 0.40 (14) Y 
QAO 151 (89) 159(93) 4.46 (157) N (5-77%) 
QOB 0 0 0.80 (28) Y 
QBO 144 (85) 157 (92) 4.78 (168) N (9-99%) 
QOC 0 0 0.60 (21) Y 
QCO 130 (76) 347 (203) 7.88 (277) N (167-264%) 
QAB 71 (42) 8(4) 1.60 (56) Y 
QBA 0 11 (6) 1.64 (58) N (100%) 
QAC 0 0 0.61 (22) Y 
QCA 222 (130) 162 (95) 4.45 (156) Y 
QBC 0 0 0.70 (24) Y 
QCB 0 132 (78) 4.12 (145) N (100%) 
QRB 178 (104) 156 (91) 4.72 (166) Y 
QRC 822 (482) 340 (199) 7.74 (272) N (44-59%) 
£QJA 222 (130) 173 (101) 6.49 (228) Y 
£QAJ 222 (130) 167 (98) 6.68 (235) Y 
ZQI B 321 (188) 390 (228) 10.68 (376) N (22-100%) 
IQBJ 322(189) 323 (189) 11.84 (416) Y 
ZQJC 1176 (689) 1176 (689) 21.52 (757) Y 
SQCI 1175 (688) 981 (575) 24.18 (850) Y 

Table F-13. Estimated building airflow network using synthetic imperfect CO2 
measurements with precision error only (transient, 1 iteration of SDE model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA 0 1 (1) 100% 
QAO 151 (89) 168 (99) 11% 
QOB 0 2(1) 100% 
QBO 144 (85) 208 (122) 44% 
QOC 0 3(2) 100% 
QCO 130 (76) 441 (258) 239% 
QAB 71 (42) 8(4) 89% 
QBA 0 0 0% 
QAC 0 0 0% 
QCA 222 (130) 175 (102) 22% 
QBC 0 0 0% 
QCB 0 120 (70) 100% 
QRB 178 (104) 169 (99) 5% 
QRC 822 (482) 446 (261) 46% 
IQJA 222 (130) 176 (103) 21% 
IQAJ 222(130) 176 (103) 21% 
IQjB 321 (188) 378 (222) 18% 
IQB) 322(189) 378 (222) 17% 
IQjC 1176 (689) 1180 (692) 0% 
IQci 1175 (688) 1180 (692) 0% 
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Table F-14. Estimated building airflow network using synthetic imperfect C 0 2 

measurements with precision error & bias (transient, 1,000 iterations of SDE model). 
Synthetic airflow rate, 

m3/h (cfm) 
Estimated airflow rate, 

m3/h (cfm) 
Min Max 

Synthetic value within 
estimated range? 

(If N, percentage difference) 
QOA 0 0 18 (11) Y 
QAO 151 (89) 171 (100) 2 5 2 ( 1 4 8 ) N ( 1 3 - 6 6 % ) 

QOB 0 0 37 (22) Y 
QBO 144 (85) 174 (102) 2 6 6 (156) N ( 2 1 - 8 4 % ) 
Qoc 0 0 35 (20) Y 
Qco 130 (76) 3 5 4 (207) 4 5 5 (267) N ( 1 7 2 - 2 5 0 % ) 
QAB 71 (42) 7 ( 4 ) 81 (47) Y 
QBA 0 9 ( 5 ) 86 (51) N ( 1 0 0 % ) 

QAC 0 0 37 (22) Y 
QCA 2 2 2 (130) 170 (99) 2 5 5 (150) Y 
QBC 0 0 35 (20) Y 
QCB 0 146 (85) 2 3 4 (137) N ( 1 0 0 % ) 

QRB 178 (104) 170 (100) 2 6 5 (155) Y 
QRC 8 2 2 (482) 349 (205) 4 5 8 (268) N ( 4 4 - 5 8 % ) 

ZQJA 2 2 2 ( 1 3 0 ) 179 (105) 3 6 0 (211) Y 
2 2 2 ( 1 3 0 ) 178 (104) 3 7 0 (217) Y 

£Qj B 321 (188) 4 0 5 (236) 6 0 2 (353) N ( 2 2 - 8 8 % ) 

£QBJ 3 2 2 ( 1 8 9 ) 3 5 4 (207) 6 5 2 (382) N ( 1 0 - 1 0 2 % ) 

ZQJC 1176 (689) 1176 (689) 1283 (752) Y 
IQCI 1175 (688) 1018 (597) 1403 (822) Y 

Table F-15. Estimated building airflow network using synthetic imperfect CO2 
measurements with precision error & bias (transient, 1 iteration of SDE model). 

Synthetic airflow rate, 
m3/h (cfm) 

Estimated airflow 
rate, m3/h (cfm) 

Percentage error in Q 

QOA 0 0 0 % 
QAO 151 (89) 2 2 6 (133) 5 0 % 
QOB 0 0 0 % 
QBO 144 (85) 188 (110) 3 0 % 

Qoc 0 0 0 % 

Qco 130 (76) 3 7 3 (219) 1 8 7 % 

QAB 71 (42) 1 5 ( 9 ) 7 9 % 
QBA 0 10 (6) 1 0 0 % 

QAC 0 0 0 % 
QCA 2 2 2 (130) 2 3 2 (136) 4 % 

QBC 0 2 ( 1 ) 1 0 0 % 

QCB 0 173 (101) 1 0 0 % 

QRB 178 (104) 2 3 8 (139) 3 4 % 

QRC 8 2 2 (482) 4 0 2 (235) 5 1 % 
IQjA 2 2 2 (130) 2 4 2 (142) 9 % 
IQAj 2 2 2 ( 1 3 0 ) 2 4 2 (142) 9 % 
IQjB 321 (188) 4 3 7 (256) 3 6 % 
I Q B I 3 2 2 ( 1 8 9 ) 4 3 8 (257) 3 6 % 

£Qic 1176 (689) 1180 (691) 0 % 
IQci 1175 (688) 1180 (691) 0 % 
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ABSTRACT 

An appropriate estimate of a building airflow network, which consists of infiltration and interzonal airflow, is 
important when determining indoor air quality, energy use, and for detecting contaminants. The objective of this 
study was to estimate the airflow network of a commercial building using C0 2 as a tracer. C0 2 is naturally present 
in the environment and is generated inside buildings by occupants. In Part I of this study, various sets of "perfect" 
C0 2 measurements were simulated under different occupancy schedules. In Part II of this study, the effect of C0 2 

sensor uncertainty on airflow estimation was evaluated. Linear least squares was used in both parts of this study to 
estimate the building airflow network. This study demonstrated (1) the feasibility of using C0 2 as a tracer to 
estimate a building airflow network and (2) that a good estimate of the building airflow network can be made even 
under sensor uncertainty. 

1. INTRODUCTION 

An appropriate estimate of a building airflow network, which consists of infiltration and interzonal airflow, is 
important when determining indoor air quality, energy use, and for detecting contaminants. Fan pressurization tests 
are used to determine the airtightness of a building envelope, which is characteristic of the envelope construction. 
Tracer gas tests, on the other hand, are used to determine the infiltration through a building envelope under specific 
outdoor and indoor conditions. Tracer gas tests can also be used to determine interzonal airflows. 

ASTM Standard E779 specifies test conditions for blower-door tests and is intended for single-zone buildings or 
multi-zone buildings that can be considered a single-zone (ASTM, 2003). Canadian Standard CGSB149.15 specifies 
testing conditions for a fan pressurization test using a building's own air handling system (CGSB, 1999). It has been 
applied to commercial buildings with limitations (Jeong et al, 2008). Bahnfleth et al. (1999) compared these two 
test standards in two multi-zone, multi-story buildings. The researchers found that neither method was easy to 
implement. Wind and stack effects were difficult to control in multi-story buildings. Further, the sealing of leakage 
paths between floors via shaft penetrations was challenging. Therefore, the results of the fan pressurization tests may 
be inaccurate. 

ASTM Standard E741 specifies test conditions for tracer gas tests, as well as how to then determine air exchange 
rates (ASTM, 2000). Studies in the literature using C0 2 as a tracer have only been performed on single-zone or 
small multi-zone residences (Aglan, 2003; Lu et al., 2010; Penman, 1980; Penman et al., 1982; Roulet et al., 2002; 
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Smith, 1988; Yan et al., 2007). Most of these tests determined overall air exchange rates with the outdoors and not 
the specific airflow rate through the building envelope or between zones (interzonal airflow). In order to estimate 
interzonal airflow rates, either multiple tracers are needed (Miller et al., 1997) or multiple tracer tests must be 
performed (Afonso et al., 1986). 

1.1 Study Objectives 
The objective of this study was to estimate the airflow network of a commercial building using CO2 as a tracer. It 
offers several advantages over the traditional blower-door and tracer gas tests just discussed. First, this study 
presents a method that can be implemented on multi-zone, commercial buildings, which is currently challenging 
given their size and the complexity of their building airflow network. Second, the method presented is able to 
determine airflow rates across the building envelope in each zone and also between zones. Third, the use of C0 2 is 
advantageous as it is a naturally present tracer. C0 2 sensors are readily available and relatively inexpensive 
compared to the equipment needed to measure a traditional tracer gas such as SF6. And lastly, the method presented 
provides a fast estimate of the building airflow network. It requires less time to set-up than a traditional blower-door 
or tracer gas test and has the potential to determine a building airflow network in real-time. 

1.2 Study Applications 
This building airflow network estimation method presented in this study has several applications. First, it can be 
used to determine the building airtightness at specific parts of a building, not just the overall building airtightness. 
Second, once the building airflow network is estimated, it can be used to provide a quick estimate of the dispersion 
of other unmeasured contaminants. Third, an understanding of the building airflow network can provide insight into 
the pressure distribution of a building. This information is critical in spaces such as laboratories and hospitals. 
Lastly, it can be used for building commissioning. 

In Part I of this study, various sets of "perfect" C0 2 measurements were simulated under different occupancy 
schedules. In Part II of this study, the effect of C0 2 sensor uncertainty on airflow estimation was evaluated. Linear 
least squares was used in both parts of this study to estimate the building airflow network. 

2.1 Synthetic Test Building 
In lieu of experimental data, a three-zone commercial building was modeled in CONTAM (Walton et al., 2005). 
Figure 1 shows the location of Zones A (common area), B (office), and C (conference room), along with their 
respective volumes. The exterior wall is modeled as brick veneer with a leakage property of 1.14 cm2/m2. The 
interior walls are modeled with leakage of 1.12 cm2/m2. The inoperable closed windows are modeled with leakage 
0.86 cm2/m of sash. The interior open doors are modeled as 2.1 m2 openings. One-way flow through each of these 
leakage paths is governed by a power-law equation of the form F = K(AP)", where F is the airflow rate (kg/s), AP is 
the pressure difference calculated by CONTAM (Pa), and K and n are empirical constants. In this study, K=\ and 
«=0.65 for all of the leakage paths. The leakage properties of each leakage path, along with air density, are then used 
to convert F (kg/s) to Q (m3/s). 

2. STUDY METHODS 

Outdoors 
C0 = 400 ppm 

Outdoor Exhaust 
air in air out 

is 
Zone A (common area), 336 m3 

Wall crack (typ.) u Zone B (office), 37 m' ,3 

Door .(typ.) 
Window (typ.) 

Zone C (conference room), 168 nr 3 4 Occupant (typ.) 
' G = 0.311 L/min 

Figure 1: CONTAM model of three-zone test building. 
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(Stepl) (Step 2) (Step 5) 

(Step 3) (Step 4) 

Figure 2: Flow diagram of study process. 

A recirculation ventilation system was modeled with 20% outdoor air. The location of the outdoor air intake and 
total exhaust are shown in Figure 1. The supply fan delivers 4 m3/h (145 cfm) to Zone B and 20 m3/h (690 cfm) to 
Zone C, which are approximately 7 air changes per hour (ACH). Because Zone A was not mechanically ventilated 
and has a relatively large volume, the whole building air exchange rate is about 1 ACH. The figure shows the 
location of ductwork, diffusers, and exhausts. C0 2 is present in the outdoors (Zone 0) with a constant concentration 
of400 ppm (DOC, 2010). C0 2 is generated by occupants in each zone at a rate of G = 0.311 L/min (ASHRAE, 
1990). 

Figure 2 summarizes the study process. In lieu of experimental data, the first step was to generate synthetic C0 2 

measurements using CONTAM (Step 1). CONTAM first determines the pressure distribution. It then utilizes 
nonlinear pressure relationships, such as power-law equations, to determine the airflow rate through each leakage 
path and ductwork (Step 2). This synthetic building airflow network is then used to calculate synthetic C0 2 

measurements (Step 3). This study then utilized linear least squares to back-estimate the building airflow network in 
Step 4 using the synthetic C0 2 measurements provided by CONTAM in Step 3. Lastly, the estimated building 
airflow network from Step 4 is compared to the one that actually generated the synthetic C0 2 measurements 
(CONTAM model, Step 2). Keep in mind that CONTAM utilizes nonlinear relationships between pressure and 
airflow to calculate airflow, whereas in this study, linear relationships between contaminant concentration and 
airflows were utilized to back-calculate airflow. 

2.2 Building Airflow Network 
The building airflow network can be estimated using the general contaminant mass balance equation is given in 
Equation (1). For this study, synthetic steady-state C0 2 measurements are available from CONTAM. Therefore, the 
left hand side of Equation (1) is zero. The use of transient measurements is saved for future work. 

v, ^ = o = ZQpcJ - + EG, (i) 
j*i j*i 

Qji is the airflow rate from zone j to zone i (m3/s), Q,, is the airflow rate from zone i to zone j (m3/s), C, is the C0 2 

concentration in zone j (kg/m3), C, is the C0 2 concentration in zone i (kg/m3), and EG, is the total C0 2 generated in 
zone i (kg/s). Thus, for N zones, the system of contaminant mass balance equations can be written as: 

- G = Q C (2) 

where Q are the parameters to be estimated (building airflow network), C are the C0 2 concentrations in each of the 
N zones, the supply concentration, Cs, and the ambient concentration, C0. B are sources of C0 2 in each of the N 
zones. Equation (2) can be expanded as: 
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In order to estimate the parameters, Q, the system of equations should be just- or over-determined. Thus, various 
occupancy schedules were modeled to generate different sets of C0 2 data. Airflow remained constant. The 
occupancy schedules modeled are given in Table 1. Thus, as an example, EGA (total C 0 2 generated in Zone A) 
would be 1 0.311 L/min, EGB (total C0 2 generated in Zone B) would be 1 0.311 L/min, and SGC (total C0 2 

generated in Zone C) would be 5 0.311 L/min for Test 1. The resulting steady-state C 0 2 concentrations are given in 
Table 2. In Tests 1-6, Zone A had the highest steady-state C0 2 concentration, even though it had the same 
occupancy as Zone B, because it was not mechanically ventilated. The more total occupants inside the synthetic 
building, the higher the steady-state C0 2 concentrations were (see Tests 1 and 9). 

Table 1: Number of occupants modeled in CONTAM. 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 
Zone A 1 1 1 1 1 1 1 1 1 
Zone B 1 1 1 1 1 1 2 3 4 
Zone C 5 4 3 2 1 0 1 2 3 
Total 

Table 2: Synthetic steady-state C0 2 measurements (ppm) calculated by CONTAM. 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 
Zone A 786 741 695 650 604 558 627 696 765 
Zone B 720 687 653 620 588 554 669 784 900 
Zone C 698 653 607 562 516 471 539 608 677 
Supply 611 583 555 527 499 471 522 573 625 

2.3 Parameter Estimation 
The parameters, Q, were estimated using linear least squares, which minimizes a function, J: 

J = | Q C + G | 2 (4) 

which is the absolute difference between the left and right hand side of Equation (2). Q must: (a) satisfy air mass 
balance in each zone (incoming air - outgoing air = 0); (b) be non-negative; and (c) satisfy additional known 
conditions. The additional known conditions were: (c-1) supply airflow rates into Zones B and C were provided, as 
was the incoming outdoor air and total exhausted airflow rates; and (c-2) since Zone A was not mechanically 
ventilated, its supply and exhaust airflow rates were zero. 

Part I of this study consisted of using "perfect" C0 2 measurements taken directly from the CONTAM model. Thus, 
Equation (4) was used in parameter estimation. Part II of this study consisted of observing the effects of C0 2 sensor 

uncertainty on airflow estimation. Therefore, C in Equation (4) was replaced with C , where C = C ± £ . s is the 
sensor uncertainty, which was assumed to be 5% of the "perfect" measurement. A Monte Carlo simulation with 
1,000 iterations was employed to observe the effect of C0 2 sensor uncertainty on airflow estimation. For each 
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Outdoors 
C0 = 400 ppm 0o. 

Zone A, 336 m 
it 

QAC -QCA 

w 

0B A 4 

SAB 

QRBI 

4 4 

r. 
I QRCI 

Qc< 

= = t 3 =* — 

I T g a c J i ! 

Zone B, 37 m 

,QOB 

QBO 

Zone C, 168 m* 

Occupant (typ.) 
G = 0.311 L/min 

Figure 3: Building model showing parameters (airflow rates) estimated. 

iteration, a single error value is sampled to determine C . Thus, at the end of 1,000 iterations, the building airflow 
network will include mean (p) and standard deviation values (a) (reported as min and max values, which are p-a and 
p+G, respectively). The results of Part I and II are presented in the following section. 

3 . R E S U L T S 

Figure 3 shows that 14 unknown parameters (airflow rates) were determined. There are two exhausts in Zone C 
(0RA and QRC2), but only the total exhaust rate, QRC, was estimated. The airflow rate between two zones, including 
the outdoors, was the total airflow rate through all of the leakage paths between them. For example, there were two 
open doors and two interior wall leakage paths between Zones A and C. However, the airflow rate that was 
estimated between them was represented only by QAC or QCA- Each of the leakage paths in CONTAM was modeled 
as one-way flow, and each parameter must be non-negative (an imposed constraint). Therefore, only one of each 
pair of airflows between two zones will have a non-negative value. For example, between Zones A and C, either 
QAC or QCA will be non-negative and the other zero. In real buildings, two-way flow in leakage paths may exist 
between two zones. This situation is saved for future work. 

3.1 Part I: Parameter Estimation using Perfect Sensor Measurements 
Table 3 shows that airflow estimates from parameter estimation are mostly in good agreement with the synthetic 
values from CONTAM. The airflow estimates met all of the required constraints. Specifically, they (a) satisfied air 
mass balance in each zone (last six rows of Table 3), (b) were all non-negative, and (c) only one of each pair of 
airflows between two zones had a non-negative value. 

The mean absolute difference in estimated airflows was 0.50 m3/h (17 cfm), which is < 1 ACH difference in any 
zone. The largest percentage difference in estimated airflows was for QCO (100%), QBo (81%), and QRB (48%). 
Though these differences were considerable, steady-state C0 2 concentrations calculated using the estimated airflows 
differed <1% with those calculated by the CONTAM model. Thus, even relatively large differences in the 
estimation of the building airflow network resulted in small, if not negligible, differences in the calculation (or 
prediction) of contaminant concentration. Therefore, it could be concluded that C0 2 can be used as a tracer to 
estimate a building airflow network when steady-state measurements are available. A similar estimation procedure 
using transient C0 2 measurements is saved for future work. 

3.2 Part II: Parameter Estimation using Sensor Measurements with Uncertainty 
Table 4 shows the airflow estimates from parameter estimation using sensor measurements with uncertainty. Instead 
of a single value for each airflow estimate, the min and max values are given. The last column of Table 4 indicates 
whether or not the synthetic airflow from CONTAM fell within the range of the estimated airflows. For most of the 

International High Performance Buildings Conference at Purdue, July 12-15, 2010 



www.manaraa.com

3414, Page 1 

Table 3: Results of parameter estimation using perfect sensor measurements. 

Synthetic airflow from Airflow from parameter Percentage difference 
CONTAM, m3/h (cfm) estimation, m3/h (cfm) (Synthetic - Estimate)/Synthetic x 100 

QOA 0 0 0% 
QAO 2.25 (79) 2.25 (79) 0.11% 
QOB 0 0 0% 
QBO 2.15 (75) 3.88 (137) 80.93% 
Qoc 0 0 0% 
Qco 1.73 (61) 0 100% 
QAB 1.62 (57) 1.63 (57) 0.15% 
QBA 0 0 0% 
QAC 0 0 0% 
QCA 3.88 (136) 3.88 (136) 0% 
QBC 0 0 0% 
QCB 0 0 0% 
QRB 3.63 (128) 1.89 (66) 47.89% 
QRC 14.01 (493) 15.74 (554) 12.38% 

3.88 (136) 3.88 (136) 0% 
ZQA, 3.88 (136) 3.88 (136) 0% 
ZQIB 5.77 (203) 5.77 (203) 0% 
ZQB, 5.77 (203) 5.77 (203) 0% 
2 0 c 19.62 (690) 19.62 (690) 0% 
2 0 c i 19.62 (690) 19.62 (690) 0% 

Table 4: Results of parameter estimation using sensor measurements with uncertainty. 

Synthetic airflow from Range of airflow from Does synthetic value fall within 
CONTAM, m3/h (cfm) parameter estimation, 

m3/h (cfm) 
estimated range? 

(If N, percentage difference) 
Min Max 

QOA 0 0 0.04(1) Y 
QAO 2.25 (79) 1.97(69) 2.41 (85) Y 
QOB 0 0 0.03 (1) Y 
QBO 2.15 (75) 2.99(105) 4.73 (166) N (39-120%) 
Qoc 0 0 0.50 (18) Y 
Qco 1.73 (61) 0 1.21 (42) N (30-100%) 
QAB 1.62 (57) 0.98 (35) 2.18 (77) Y 
QBA 0 0 0 Y 
QAC 0 0 0.27 (9) Y 
QCA 3.88 (136) 3.29(116) 4.49(158) Y 
QBC 0 0 0.81 (28) Y 
QCB 0 0 1.09(38) Y 
QRB 3.63 (128) 0.68(24) 3.14(111) N (13-81%) 
QRC 14.01 (493) 14.5 (509) 17.0 (596) N (3-21%) 
EQa 3.88 (136) 3.29(116) 4.53 (159) Y 
ZQM 3.88 (136) 2.95(104) 4.87(171) Y 
M B 5.77 (203) 5.13(180) 7.45(262) Y 
ZQB, 5.77 (203) 3.67(129) 8.68 (305) Y 
M c 19.62 (690) 19.62(690) 21.20(745) Y 
£Qq 19.62 (690) 17.78 (625) 23.74 (835) Y 
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flows, the synthetic airflow from CONTAM does fell within the range of the estimated airflows. Similar to the 
airflow estimation results with perfect sensor measurements, the estimated range of airflows for QCO, QBO, and QRB 
did not cover the synthetic values from CONTAM. Neither was it covered for QRC, though the difference was 
smaller than for the other three inconsistent airflows. Overall, the magnitude of percentage difference between the 
synthetic and estimated airflows using sensor measurements with uncertainty was similar to the differences found 
when using perfect sensor measurements. Therefore, it could be concluded that sensor error did not greatly affect the 
accuracy of the building airflow network estimate. 

The mean absolute difference in estimated airflows was between 0.54 and 0.76 m3/h (19-21 cfm), which is still < 1 
ACH difference in any zone. The largest difference between the steady-state C 0 2 concentrations calculated using 
the estimated airflows and those calculated by the CONTAM model was between 0.4 and 1.1%. This range of error, 
as a result of using sensor measurements with uncertainty, was very similar to the error as a result of using perfect 
sensor measurements. Therefore, it could be concluded that sensor error also did not greatly affect the accuracy of 
the prediction of contaminant concentration. 

4. DISCUSSION 

Sec. 1.2 indicated four applications for the airflow estimation method presented in this study. First, this study was 
able to determine the airtightness of each zone, which was nearly identical to the synthetic result calculated by the 
CONTAM model. Using the estimated airflows, an exfiltration rate of 0.10 ACH existed in Zone B, 0.01 ACH 
exfiltration in Zone A, and 0 ACH exfiltration in Zone C. The CONTAM model calculated 0.06 ACH exfiltration in 
Zone B, and 0.01 ACH exfiltration in both Zones A and C. Given that the ventilation supplied 7 ACH to Zones B 
and C, the differences between the estimated and synthetic exfiltration rates were very small. Therefore, one could 
reasonably use the results of the estimation method presented in this study to improve the airtightness at specific 
locations in a building to reduce the amount of energy wasted through infiltration or exfiltration. 

Second, this study was able to predict the steady-state C0 2 concentrations within 5% of the synthetic values from 
CONTAM. Therefore, it could also be reasonably used to predict the transport of other gaseous contaminants. Third, 
this study was able to determine the pressure distribution inside the synthetic building, which was nearly identical to 
the synthetic result calculated by the CONTAM model. Using the estimated airflows, it could be concluded that the 
pressure in Zone C was greater than in Zone A, and the pressure in Zone A was greater than in Zone B. Since it was 
estimated that there was little to no flow between Zones B and C, one might conclude that the pressures in Zones B 
and C were equal. However, if that were the case, then the estimate would have shown air from Zone B to Zone A 
when the opposite was estimated. Therefore, the pressure in Zone B must be the lowest of the three zones and some 
flow would exist from Zone C to Zone B. Thus, one could reasonably use the results of the estimation method 
presented in this study to redistribute pressure or select locations for specialized, pressure-sensitive spaces (like in 
laboratories and hospitals) during a building renovation. 

Lastly, the airflow estimation method presented in this study could be used for building commissioning. The 
airtightness information can be used to help reduce energy waste, the prediction of contaminant dispersion can be 
used to improve indoor air quality, and the pressure distribution information can be used to verify ventilation 
performance. 

5. CONCLUSIONS 

The building airflow network of a synthetic three zone commercial building was estimated using linear least squares 
with constraints. Steady-state C0 2 measurements were obtained from CONTAM simulations under different 
occupancy schedules. In Part I of this study, "perfect" steady-state C0 2 measurements were used to estimate the 
building airflow network. In Part II of this study, the effect of C0 2 sensor uncertainty on the airflow estimate was 
evaluated. It was found that, no matter without or with sensor uncertainty, steady-state C0 2 measurements were able 
to be used to obtain a reasonable estimate of the building airflow network compared to the synthetic values from 
CONTAM. Furthermore, for both parts of this study, even large differences between the synthetic and estimated 
airflow rates resulted in good prediction of C0 2 concentrations. 
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6. FUTURE WORK 

One area for future work includes utilizing transient C0 2 concentrations to estimate a building airflow network. 
Recursive least squares (RLS) can be used to estimate airflow based on incoming contaminant data from each zone. 
RLS offers several advantages over the linear least squares method used in this study. Namely, there is no need for 
matrix inversion, which is more computationally efficient. To study the effect of sensor uncertainty when utilizing 
transient C0 2 concentrations, Equation (1) can be rewritten as a stochastic differential equation and then RLS used. 
Another area for future work includes studying the limitations of the estimation method presented in this study by 
increasing the number of zones or ACH of the zones. The airflow estimation method presented in this study would 
also require validation. 
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